Description
求
∑i=1n∑j=1nlcm(i,j)
推柿子:
A(n)Ans========∑i=1nlcm(i,n)n∑d∣n∑i=1nid[(nd,id)=1]n∑d∣n∑i=1di[(d,i)=1]n∑d∣n[d=1]+dφ(d)2n2+12∑d∣ndφ(d)2∑i=1nA(i)−n(n+1)2∑i=1ni∑d∣idφ(d)∑d=1nd2φ(d)∑i=1⌊nd⌋i
后面那个东西取值只有 O(n√) 种。
所以杜教筛
S(n)===∑i=1n(id2⋅φ)(i)∑i=1n[(φ∗1)⋅id2](i)−∑i=2nS(⌊ni⌋)i2∑i=1ni3−∑i=2nS(⌊ni⌋)i2
还有一种处理方法,从 jiry_2博客上看到的。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 10101010;
const ll MOD = 1000000007;
const ll INV2 = (MOD + 1) / 2;
const ll INV6 = (MOD + 1) / 6;
inline char get(void) {
static char buf[100000], *S = buf, *T = buf;
if (S == T) {
T = (S = buf) + fread(buf, 1, 100000, stdin);
if (S == T) return EOF;
}
return *S++;
}
template<typename T>
inline void read(T &x) {
static char c; x = 0; ll sgn = 0;
for (c = get(); c < '0' || c > '9'; c = get()) if (c == '-') sgn = 1;
for (; c >= '0' && c <= '9'; c = get()) x = x * 10 + c - '0';
if (sgn) x = -x;
}
int phi[N], pre[N];
int vis[N], prime[N];
ll Pcnt, lim, ans;
ll n;
map<ll, int> mp;
inline void Add(ll &x, ll a) {
x = (x + a) % MOD;
}
inline ll Mod(ll x) {
return (x % MOD + MOD) % MOD;
}
inline void Pre(int n) {
phi[1] = 1; int x;
for (int i = 2; i <= n; i++) {
if (!vis[i]) {
phi[i] = i - 1; prime[++Pcnt] = i;
}
for (int j = 1; j <= Pcnt && (x = prime[j] * i) <= n; j++) {
vis[x] = 1;
if (i % prime[j]) {
phi[x] = phi[prime[j]] * phi[i];
} else {
phi[x] = prime[j] * phi[i]; break;
}
}
}
for (int i = 1; i <= n; i++)
pre[i] = ((ll)phi[i] * i % MOD * i % MOD + pre[i - 1]) % MOD;
}
inline ll Sum1(ll n) {
n %= MOD;
return n * (n + 1) / 2 % MOD;
}
inline ll Sum2(ll n) {
n %= MOD; ll n2 = (2 * n + 1) % MOD;
return n * (n + 1) % MOD * n2 % MOD * INV6 % MOD;
}
inline ll Sum2(ll l, ll r) {
return Mod(Sum2(r) - Sum2(l - 1));
}
inline ll Sum3(ll n) {
n = Sum1(n);
return n * n % MOD;
}
inline ll S(ll n) {
if (n <= lim) return pre[n];
if (mp.count(n)) return mp[n];
ll res = Sum3(n); ll pos;
for (ll i = 2; i <= n; i = pos + 1) {
pos = n / (n / i);
Add(res, MOD - (ll)Sum2(i, pos) * S(n / i) % MOD);
}
return mp[n] = res;
}
int main(void) {
freopen("1.in", "r", stdin);
freopen("1.out", "w", stdout);
read(n);
Pre(lim = (int)pow(n, 0.7));
ll pos;
for (ll d = 1; d <= n; d = pos + 1) {
pos = n / (n / d);
Add(ans, (ll)Mod(S(pos) - S(d - 1)) * Sum1(n / d) % MOD);
}
cout << ans << endl;
return 0;
}