1010 Radix

Given a pair of positive integers, for example, 666 and 110110110, can this equation 6=1106 = 1106=110 be true? The answer is yes, if 666 is a decimal number and 110110110 is a binary number.

Now for any pair of positive integers N​1N​_1N1​​ and N​2N​_2N2​​, your task is to find the radix of one number while that of the other is given.

Input Specification:

Each input file contains one test case. Each case occupies a line which contains 444 positive integers:

N1 N2 tag radix

Here N1N_1N1 and N2N_2N2 each has no more than 101010 digits. A digit is less than its radix and is chosen from the set { 0−9,a−z0-9, a-z09,az } where 0−90-909 represent the decimal numbers 0−90-909, and a−za-zaz represent the decimal numbers 10−3510-351035. The last number radix is the radix of N1N_1N1 if tag is 111, or of N2N_2N2 if tag is 222.

Output Specification:

For each test case, print in one line the radix of the other number so that the equation N1=N2N_1 = N_2N1=N2 is true. If the equation is impossible, print Impossible. If the solution is not unique, output the smallest possible radix.

Sample Input 1:

6 110 1 10

Sample Output 1:

2

Sample Input 2:

1 ab 1 2

Sample Output 2:

Impossible

题解:

101010 题里最难的一题了,考点主要有:任意进制到十进制数的转换、二分法的应用、大数溢出,其中大数溢出比较坑。。。
本题若不使用二分法,而采用从radix = 2开始遍历的方式,则无法通过测试点7;但若使用二分法而没有判断大数溢出的情况,则会有很多测试点不通过。


注意事项:
  1. 将任意进制的数转换为十进制数:
	int sum = 0;	// 此处需要注意判断 sum 的范围, 必要时应使用 long long
	for(int i=0;num[i]!='\0';i++
		sum = sum*radix + num[i] - '0';
  1. 关于大数溢出的判断方法:
	long long num;	
	......		// 此处保证正常情况下 num >= 0
	if(num < 0)
		// 溢出
  1. 二分查找
	while(low<=high){
		mid = low + (high-low)/2;	// 避免 (low+high) 发生溢出
		if(...)
			low = mid + 1;
		else
			high = mid - 1;

#include <iostream>
#include <cstdlib>
#include <iomanip>
using namespace std;

long long trans2dec(char* num, long long radix)
{
    long long sum = 0;
    for(int i=0;num[i]!='\0';i++){
        if(num[i]>='0' && num[i]<='9')
            sum = sum*radix + num[i] - '0';
        else
            sum = sum*radix + num[i] - 'a' + 10;
    }
    return sum;
}

int main()
{
    char num[2][12] = {'\0'};
    int tag;
    long long radix, N1,N2;
    cin>>num[0]>>num[1]>>tag>>radix;
    N1 = trans2dec(num[tag-1],radix);

    radix = 1;
    for(int i=0;num[2-tag][i]!='\0';i++){
        if(num[2-tag][i]>='0' && num[2-tag][i]<='9'){
            if(radix < num[2-tag][i] - '0')
                radix = num[2-tag][i] - '0';
        }
        else
            if(radix < num[2-tag][i] - 'a' + 10)
                radix = num[2-tag][i] - 'a' + 10;
    }

    long long low = radix + 1;
    long long high = N1 + 1;
    while(low <= high){
        radix = low + (high - low)/2;
        N2 = trans2dec(num[2-tag], radix);
        if(N1 == N2){
            cout<<radix;
            return 0;
        }
        else if(N2 < 0 || N2 > N1){     // 当 N2 溢出时,其值为负!
            high = radix - 1;
        }
        else{
            low = radix + 1;
        }
    }
    cout<<"Impossible";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值