In mathematics, the nth harmonic number is the sum of the reciprocals of the first n natural numbers:
In this problem, you are given n, you have to find Hn.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 108).
Output
For each case, print the case number and the nth harmonic number. Errors less than 10-8 will be ignored.
Sample Input
12
1
2
3
4
5
6
7
8
9
90000000
99999999
100000000
Sample Output
Case 1: 1
Case 2: 1.5
Case 3: 1.8333333333
Case 4: 2.0833333333
Case 5: 2.2833333333
Case 6: 2.450
Case 7: 2.5928571429
Case 8: 2.7178571429
Case 9: 2.8289682540
Case 10: 18.8925358988
Case 11: 18.9978964039
Case 12: 18.9978964139
题意:根据公式,求前n项的和
分析:因为n的范围太大,求和肯定会超时,所以可以把每一百个数存一下,进行打表,求前n项的和最多遍历100个数。
代码:
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; double sum[1000000+10]; int main() { double ans=0; sum[0]=0; for(int i=1;i<=1e8;i++) //打表 { ans+=1.0/i; if(i%100==0) sum[i/100]=ans; } int t,k=1,n; scanf("%d",&t); while(t--) { double cout; scanf("%d",&n); cout=sum[n/100]; for(int i=(n/100)*100+1;i<=n;i++) //不够一百个数的遍历 cout+=1.0/i; printf("Case %d: %.10lf\n",k++,cout); } }