【概率论与数理统计】第三章 多维随机变量及其分布(4)

3 两个随机变量的概率分布

3.1 两个离散型随机变量的函数的函数分布

例1:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布律为:

XYYY
X123
1 1 4 \frac{1}{4} 41 1 6 \frac{1}{6} 61 1 8 \frac{1}{8} 81
2 1 4 \frac{1}{4} 41 1 8 \frac{1}{8} 81 1 12 \frac{1}{12} 121

求:(1) Z 1 = X + Y Z_1 = X + Y Z1=X+Y的分布律;

(2) Z 2 = X Y Z_2 = XY Z2=XY的分布律;

(3) P { X = Y } P\{X = Y\} P{X=Y}

解:(1) Z 1 Z_1 Z1可能的取值为 { 1 , 2 } + { 1 , 2 , 3 } = { 2 , 3 , 4 , 5 } \{1,2\} + \{1,2,3\} = \{2,3,4,5\} {1,2}+{1,2,3}={2,3,4,5}

事件 { Z 1 = 2 } \{Z_1 = 2 \} {Z1=2}的概率为: P { Z 1 = 2 } = P { X = 1 , Y = 1 } = 1 4 P\{Z_1 = 2\} = P\{X = 1, Y = 1\} = \frac{1}{4} P{Z1=2}=P{X=1,Y=1}=41

事件 { Z 1 = 3 } \{Z_1 = 3 \} {Z1=3}的概率为: P { Z 1 = 3 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 1 } = 5 12 P\{Z_1 = 3\} = P\{X = 1, Y = 2\} + P\{X=2, Y=1\} = \frac{5}{12} P{Z1=3}=P{X=1,Y=2}+P{X=2,Y=1}=125

事件 { Z 1 = 4 } \{Z_1 = 4 \} {Z1=4}的概率为: P { Z 1 = 4 } = P { X = 1 , Y = 3 } + P { X = 2 , Y = 2 } = 1 4 P\{Z_1 = 4\} = P\{X = 1, Y = 3\} + P\{X =2, Y =2\} = \frac{1}{4} P{Z1=4}=P{X=1,Y=3}+P{X=2,Y=2}=41

事件 { Z 1 = 5 } \{Z_1 = 5 \} {Z1=5}的概率为: P { Z 1 = 5 } = P { X = 2 , Y = 3 } = 1 12 P\{Z_1 = 5\} = P\{X = 2, Y = 3\} = \frac{1}{12} P{Z1=5}=P{X=2,Y=3}=121

因此, Z 1 = X + Y Z_1 = X + Y Z1=X+Y的分布律为:

Z 1 Z_1 Z12345
P 1 4 \frac{1}{4} 41 5 12 \frac{5}{12} 125 1 4 \frac{1}{4} 41 1 12 \frac{1}{12} 121

(2) Z 2 Z_2 Z2的取值可能为 1 , 2 , 3 , 4 , 6 1,2,3,4,6 1,2,3,4,6概率分别为:

P { Z 2 = 1 } = P { X = 1 , Y = 1 } = 1 4 P\{Z_2 = 1\} = P\{X=1, Y=1\} = \frac{1}{4} P{Z2=1}=P{X=1,Y=1}=41

P { Z 2 = 2 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 1 } = 5 12 P\{Z_2 = 2\} = P\{X=1, Y=2\} + P\{X=2, Y=1\} = \frac{5}{12} P{Z2=2}=P{X=1,Y=2}+P{X=2,Y=1}=125

P { Z 2 = 3 } = P { X = 1 , Y = 3 } = 1 8 P\{Z_2 = 3\} = P\{X=1, Y=3\} = \frac{1}{8} P{Z2=3}=P{X=1,Y=3}=81

P { Z 2 = 4 } = P { X = 2 , Y = 2 } = 1 8 P\{Z_2 = 4\} = P\{X=2, Y=2\} = \frac{1}{8} P{Z2=4}=P{X=2,Y=2}=81

P { Z 2 = 6 } = P { X = 2 , Y = 3 } = 1 12 P\{Z_2 = 6\} = P\{X=2, Y=3\} = \frac{1}{12} P{Z2=6}=P{X=2,Y=3}=121

于是, Z 2 = X Y Z_2 = XY Z2=XY的概率分布律为:

Z 2 Z_2 Z212345
P 1 4 \frac{1}{4} 41 5 12 \frac{5}{12} 125 1 8 \frac{1}{8} 81 1 8 \frac{1}{8} 81 1 12 \frac{1}{12} 121

(3)事件 { X = Y } = { X = 1 , Y = 1 } ∪ { X = 2 , Y = 2 } \{X = Y\} = \{X=1, Y =1\} \cup \{X=2, Y=2\} {X=Y}={X=1,Y=1}{X=2,Y=2};因此:

P { X = Y } = P { X = 1 , Y = 1 } + P { X = 2 , Y = 2 } = 3 8 P\{X = Y\} = P\{X=1, Y=1\} + P\{X=2, Y =2\} =\frac{3}{8} P{X=Y}=P{X=1,Y=1}+P{X=2,Y=2}=83

例2:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布律为:

XYYY
X123
1 1 5 \frac{1}{5} 51 0 0 0 1 5 \frac{1}{5} 51
2 1 5 \frac{1}{5} 51 1 5 \frac{1}{5} 51 1 5 \frac{1}{5} 51

求:(1) Z = X − Y Z=X-Y Z=XY的分布律; (2) P { X < Y } P\{X \lt Y\} P{X<Y}

解:(1) Z Z Z可能的取值为 { 0 , − 1 , − 2 , 1 } \{0,-1,-2,1\} {0,1,2,1},概率分别为:

P { Z = − 2 } = P { X = 1 , Y = 3 } = 1 5 P\{Z = -2\} = P\{X = 1, Y=3\} = \frac{1}{5} P{Z=2}=P{X=1,Y=3}=51

P { Z = − 1 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 3 } = 1 5 P\{Z = -1\} = P\{X =1,Y=2\} + P\{X=2,Y=3\} = \frac{1}{5} P{Z=1}=P{X=1,Y=2}+P{X=2,Y=3}=51

P { Z = 0 } = P { X = 1 , Y = 1 } + P { X = 2 , Y = 2 } = 2 5 P\{Z = 0\} = P\{X=1, Y =1\} + P\{X=2,Y=2\} = \frac{2}{5} P{Z=0}=P{X=1,Y=1}+P{X=2,Y=2}=52

P { Z = 1 } = P { X = 2 , Y = 1 } = 1 5 P\{Z=1\} = P\{X=2,Y=1\} = \frac{1}{5} P{Z=1}=P{X=2,Y=1}=51

于是, Z = X − Y Z=X-Y Z=XY的分布律为:

Z-2-101
P 1 5 \frac{1}{5} 51 1 5 \frac{1}{5} 51 2 5 \frac{2}{5} 52 1 5 \frac{1}{5} 51

(2)事件 { X < Y } = { X = 1 , Y = 2 } ∪ { X = 1 , Y = 3 } ∪ { X = 2 , Y = 3 } \{X \lt Y\} = \{X=1,Y=2\} \cup \{X=1,Y=3\} \cup \{X=2, Y=3\} {X<Y}={X=1,Y=2}{X=1,Y=3}{X=2,Y=3},所以:

P { X < Y } = P { X = 1 , Y = 2 } + P { X = 1 , Y = 3 } + P { X = 2 , Y = 3 } = 2 5 P\{X \lt Y\} = P\{X=1,Y=2\} + P\{X=1,Y=3\} + P\{X=2, Y=3\} = \frac{2}{5} P{X<Y}=P{X=1,Y=2}+P{X=1,Y=3}+P{X=2,Y=3}=52

也可以根据 Z = X − Y Z=X-Y Z=XY的分布中 Z < 0 Z \lt 0 Z<0的概率得到:

P { X < Y } = P { X − Y < 0 } = P { X − Y = − 2 } + ¶ { X − Y = − 1 } = 2 5 P\{X \lt Y\} = P\{X - Y \lt 0\} = P\{X-Y = -2\} + \P\{X-Y = -1\} = \frac{2}{5} P{X<Y}=P{XY<0}=P{XY=2}+{XY=1}=52

例3:设随机变量 X X X Y Y Y相互独立,分别服从参数为 λ 1 ,   λ 2 \lambda_1,\ \lambda_2 λ1, λ2的泊松分布,证明: Z = X + Y Z = X + Y Z=X+Y服从参数为 λ = λ 1 + λ 2 \lambda = \lambda_1 + \lambda_2 λ=λ1+λ2的泊松分布。

证明:由已知得:

P { X = k } = λ 1 k e − λ 1 k ! ,    P { Y = k } = λ 2 k e − λ 2 k ! ;    k = 0 , 1 , 2 , . . . P\{X=k\} = \frac{\lambda_1^k e^{-\lambda_1}}{k!},\ \ P\{Y=k\} = \frac{\lambda_2^k e^{-\lambda_2}}{k!};\ \ k=0,1,2,... P{X=k}=k!λ1keλ1,  P{Y=k}=k!λ2keλ2;  k=0,1,2,...

事件 { Z = k } = { X = 0 , Y = k } ∪ { X = 1 , Y = k − 1 } ∪ . . . ∪ { X = k , Y = 0 } \{Z=k\} = \{X=0,Y=k\} \cup \{X=1,Y=k-1\} \cup ... \cup \{X=k,Y=0\} {Z=k}={X=0,Y=k}{X=1,Y=k1}...{X=k,Y=0}则:

P { Z = k } = P { X = 0 , Y = k } + P { X = 1 , Y = k − 1 } + . . . + P { X = k , Y = 0 } = ∑ i = 0 k P { X = i , Y = k − i } P\{Z=k\} = P\{X=0,Y=k\} + P\{X=1,Y=k-1\} + ... + P\{X=k,Y=0\} = \sum_{i=0}^{k} P\{X=i, Y=k-i\} P{Z=k}=P{X=0,Y=k}+P{X=1,Y=k1}+...+P{X=k,Y=0}=i=0kP{X=i,Y=ki}

因为 X X X Y Y Y相互独立,所以:

P { X = i , Y = k − i } = P { X = i } ⋅ P { Y = k − i } P\{X=i,Y=k-i\} = P\{X=i\} \cdot P\{Y=k-i\} P{X=i,Y=ki}=P{X=i}P{Y=ki} 因此:
P { Z = k } = ∑ i = 0 k P { X = i } ⋅ P { Y = k − i } = ∑ i = 0 k λ 1 i e − λ 1 i ! ⋅ λ 2 k − i e − λ 2 ( k − i ) ! = ∑ i = 0 k λ 1 i e − λ 1 i ! ⋅ λ 2 k − i e − λ 2 ( k − i ) ! ⋅ k ! k ! = e − ( λ 1 + λ 2 ) ⋅ 1 k ! ⋅ ∑ i = 0 k k ! i ! ( k − i ) ! λ 1 i λ 2 k − i = e − ( λ 1 + λ 2 ) ⋅ 1 k ! ⋅ ∑ i = 0 k C k i λ 1 i λ 2 k − i = e − ( λ 1 + λ 2 ) ( λ 1 + λ 2 ) k k !          , k = 0 , 1 , 2 , . . . = e − λ λ k k !          , k = 0 , 1 , 2 , . . . \begin{align} P\{Z=k\} &= \sum_{i=0}^{k} P\{X=i\} \cdot P\{Y=k-i\} \\ &= \sum_{i=0}^{k} \frac{\lambda_1^i e^{-\lambda_1}}{i!} \cdot \frac{\lambda_2^{k-i} e^{-\lambda_2}}{(k-i)!} \\ &= \sum_{i=0}^{k} \frac{\lambda_1^i e^{-\lambda_1}}{i!} \cdot \frac{\lambda_2^{k-i} e^{-\lambda_2}}{(k-i)!} \cdot \frac{k!}{k!} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \cdot \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_1^i \lambda_2^{k-i} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \cdot \sum_{i=0}^{k} C_k^i \lambda_1^i \lambda_2^{k-i} \\ &= \frac{ e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^k }{k!} \ \ \ \ \ \ \ \ ,k=0,1,2,... \\ &= \frac{ e^{-\lambda} \lambda^k }{k!} \ \ \ \ \ \ \ \ ,k=0,1,2,... \end{align} P{Z=k}=i=0kP{X=i}P{Y=ki}=i=0ki!λ1ieλ1(ki)!λ2kieλ2=i=0ki!λ1ieλ1(ki)!λ2kieλ2k!k!=e(λ1+λ2)k!1i=0ki!(ki)!k!λ1iλ2ki=e(λ1+λ2)k!1i=0kCkiλ1iλ2ki=k!e(λ1+λ2)(λ1+λ2)k        ,k=0,1,2,...=k!eλλk        ,k=0,1,2,...
因此, Z = X + Y Z = X + Y Z=X+Y服从参数为 λ = λ 1 + λ 2 \lambda = \lambda_1 + \lambda_2 λ=λ1+λ2的泊松分布。

3.2 两个相互独立的连续型随机变量之和的概率分布

例4:设 X X X Y Y Y是两个相互独立的连续型随机变量, X X X [ 0 , 1 ] [0,1] [0,1]上服从均匀分布, Y Y Y的概率密度为:
f Y ( y ) = { 1 2 e 1 2 y ,          y > 0 0 ,          y ≤ 0 f_Y(y) = \begin{cases} \frac{1}{2} e^{\frac{1}{2} y},\ \ \ \ \ \ \ \ &y \gt 0 \\ 0,\ \ \ \ \ \ \ \ &y \le 0 \end{cases} fY(y)={21e21y,        0,        y>0y0
求:(1) ( X , Y ) (X,Y) (X,Y)的概率密度;(2) P { X + Y ≤ 1 } P\{X+Y \le 1\} P{X+Y1};(3) P { X + Y ≤ 3 } P\{X+Y \le 3\} P{X+Y3}

解:(1)由于 X X X服从均匀分布,所以 X X X的概率密度为:
f X ( x ) = { 1 1 − 0 ,          0 ≤ x ≤ 1 0 ,          其他 = { 1 ,               0 ≤ x ≤ 1 0 ,               其他 \begin{align} f_X(x) &= \begin{cases} \frac{1}{1-0} ,\ \ \ \ \ \ \ \ &0 \le x \le 1 \\ 0,\ \ \ \ \ \ \ \ &其他 \end{cases} \\ &= \begin{cases} 1,\ \ \ \ \ \ \ \ \ \ \ \ \ &0 \le x \le 1 \\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ &其他 \end{cases} \end{align} fX(x)={101,        0,        0x1其他={1,             0,             0x1其他
又因为 X X X Y Y Y相互独立,所以 ( X , Y ) (X,Y) (X,Y)的概率密度为:
f ( x , y ) = f X ( x ) ⋅ f Y ( y ) = { 1 2 e − 1 2 y ,      0 ≤ x ≤ 1 , y > 0 0 , 其他 f(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{2} e^{-\frac{1}{2}y} ,\ \ \ \ &0 \le x \le 1, y \gt 0\\ 0, &其他 \end{cases} f(x,y)=fX(x)fY(y)={21e21y,    0,0x1,y>0其他
(2)利用(1)的结果;并画出二重积分的图像:

在这里插入图片描述

由此:
P { X + Y ≤ 1 } = ∬ X + Y ≤ 1 f ( x , y ) d x d y = ∫ 0 1 ( ∫ 0 1 − x f ( x , y ) d y ) d x = ∫ 0 1 ( ∫ 0 1 − x 1 2 e − 1 2 y d y ) d x = ∫ 0 1 ( − e − 1 2 y ∣ 0 1 − x ) d x = ∫ 0 1 [ − e − 1 2 ( 1 − x ) − ( − 1 ) ] d x = ∫ 0 1 [ 1 − e − 1 2 ( 1 − x ) ] d x             #  提示:令 u = e − 1 2 ( 1 − x ) , 再使用复合函数求导的思路来解决 = ( x − 2 e − 1 2 ( 1 − x ) ) ∣ 0 1 = 2 e − 1 2 − 1 \begin{align} P\{X+Y \le 1\} &= \iint_{X+Y\le1} f(x,y) dxdy \\ &= \int_{0}^{1} (\int_{0}^{1-x} f(x,y)dy)dx \\ &= \int_{0}^{1} (\int_{0}^{1-x} \frac{1}{2} e^{-\frac{1}{2}y} dy)dx \\ &= \int_{0}^{1} (-e^{-\frac{1}{2}y} | _{0}^{1-x})dx \\ &= \int_{0}^{1} [-e^{-\frac{1}{2}(1-x)} -(-1)]dx \\ &= \int_{0}^{1} [1-e^{-\frac{1}{2}(1-x)} ]dx \ \ \ \ \ \ \ \ \ \ \ \#\ 提示:令u=e^{-\frac{1}{2}(1-x)},再使用复合函数求导的思路来解决 \\ &= (x-2e^{-\frac{1}{2}(1-x)}) |_0^1 \\ &= 2e^{-\frac{1}{2}} - 1 \end{align} P{X+Y1}=X+Y1f(x,y)dxdy=01(01xf(x,y)dy)dx=01(01x21e21ydy)dx=01(e21y01x)dx=01[e21(1x)(1)]dx=01[1e21(1x)]dx           # 提示:令u=e21(1x),再使用复合函数求导的思路来解决=(x2e21(1x))01=2e211

书上没有这么细致,我这里尽可能地详细化每一个等式变化。

(3)与(2)计算过程基本一致;图像如下:

在这里插入图片描述

P { X + Y ≤ 1 } = ∬ X + Y ≤ 3 f ( x , y ) d x d y = ∫ 0 1 ( ∫ 0 3 − x f ( x , y ) d y ) d x = ∫ 0 1 ( − e − 1 2 y ∣ 0 3 − x ) d x = ∫ 0 1 [ 1 − e − 1 2 ( 3 − x ) ] d x = ( x − 2 e − 1 2 ( 3 − x ) ) ∣ 0 1 = 2 e − 3 2 − 2 e − 1 + 1 \begin{align} P\{X+Y \le 1\} &= \iint_{X+Y\le 3} f(x,y) dxdy \\ &= \int_{0}^{1} (\int_{0}^{3-x} f(x,y)dy)dx \\ &= \int_{0}^{1} (-e^{-\frac{1}{2}y} | _{0}^{3-x})dx \\ &= \int_{0}^{1} [1-e^{-\frac{1}{2}(3-x)} ]dx \\ &= (x-2e^{-\frac{1}{2}(3-x)}) |_0^1 \\ &= 2e^{-\frac{3}{2}} - 2e^{-1} + 1 \end{align} P{X+Y1}=X+Y3f(x,y)dxdy=01(03xf(x,y)dy)dx=01(e21y03x)dx=01[1e21(3x)]dx=(x2e21(3x))01=2e232e1+1

例5:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y),关于 X , Y X,Y X,Y的边缘概率密度分别为 f X ( x ) f_X(x) fX(x) f Y ( y ) f_Y(y) fY(y) X X X Y Y Y相互独立,求 Z = X + Y Z=X+Y Z=X+Y的概率密度。

解:因为 X X X Y Y Y相互独立,则: f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y) = f_X(x) \cdot f_Y(y) f(x,y)=fX(x)fY(y) Z = X + Y Z = X+Y Z=X+Y的分布函数为:

$F_Z(z) = P{Z \le z} = P{X+Y \le z} = \iint_{x+y \le z} f(x,y) dxdy \$

接下来画图(合理假定 z z z是正数,实际上 z z z是正是负与最终结果无关的):
在这里插入图片描述

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

因此,上述等式可以转化为:
F Z ( z ) = P { Z ≤ z } = P { X + Y ≤ z } = ∬ x + y ≤ z f ( x , y ) d x d y = ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f ( x , y ) d y ] d x = ∫ − ∞ + ∞ [ ∫ − ∞ z − x f ( x , y ) d y ] d x = ∫ − ∞ + ∞ [ ∫ − ∞ y 的积分上限 f ( x , y ) d y ] d x = ∫ − ∞ + ∞ [ ∫ − ∞ z − x f ( x , z − x ) d y ] d x \begin{align} F_Z(z) = P\{Z \le z\} = P\{X+Y \le z\} &= \iint_{x+y \le z} f(x,y) dxdy \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{+\infty} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{z-x} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{y的积分上限} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{z-x} f(x,z-x) dy]dx \\ \end{align} FZ(z)=P{Zz}=P{X+Yz}=x+yzf(x,y)dxdy=+[+f(x,y)dy]dx=+[zxf(x,y)dy]dx=+[y的积分上限f(x,y)dy]dx=+[zxf(x,zx)dy]dx
因此: f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx fZ(z)=FZ(z)=+f(x,zx)dx

同理: f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy fZ(z)=FZ(z)=+f(zy,y)dy

X X X Y Y Y相互独立时可以表示为:

$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z-x) dx $;

$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f_X(z-y) \cdot f_Y(y) dy $。

这也被称作:独立随机变量和的卷积公式

例6:设随机变量 X X X Y Y Y相互独立,都服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),求 Z = X + Y Z=X+Y Z=X+Y的概率密度。

解:由题目知, X X X Y Y Y的概率密度分别为:

f X ( x ) = 1 2 π e − x 2 2 ,    − ∞ < x < + ∞ ;      f Y ( y ) = 1 2 π e − y 2 2 ,    − ∞ < y < + ∞ f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\ \ -\infty \lt x \lt +\infty;\ \ \ \ f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},\ \ -\infty \lt y \lt +\infty fX(x)=2π 1e2x2,  <x<+;    fY(y)=2π 1e2y2,  <y<+

又因 X X X Y Y Y相互独立,所以 ( X , Y ) (X,Y) (X,Y)的概率密度为:

f ( x , y ) = f X ( x ) ⋅ f Y ( y ) = 1 2 π e − x 2 + y 2 2 ,    − ∞ < x , y < + ∞ f(x,y) = f_X(x) \cdot f_Y(y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}},\ \ -\infty \lt x,y \lt +\infty f(x,y)=fX(x)fY(y)=2π1e2x2+y2,  <x,y<+

Z = X + Y Z=X+Y Z=X+Y的概率为:
f Z ( z ) = ∫ − ∞ + ∞ f X ( x ) ⋅ f Y ( z − x ) d x = ∫ − ∞ + ∞ 1 2 π e − x 2 + ( z − x ) 2 2 d x = 1 2 π ∫ − ∞ + ∞ e − x 2 + z 2 − 2 z x + x 2 2 d x = 1 2 π ∫ − ∞ + ∞ e − 2 x 2 + z 2 − 2 z x 2 d x = 1 2 π ∫ − ∞ + ∞ e − 2 x 2 + z 2 2 − 2 z x + z 2 2 2 d x = 1 2 π ∫ − ∞ + ∞ e − 2 ( x 2 − z x + z 2 4 ) + z 2 2 2 d x = 1 2 π ∫ − ∞ + ∞ e − 2 ( x 2 − z x + z 2 4 ) 2 ⋅ e − z 2 4 d x = e − z 2 4 2 π ∫ − ∞ + ∞ e − ( x 2 − z x + z 2 4 ) d x          # 令 u = x − z 2 , 则 u 2 = x 2 − x z + z 2 4 , d u = d x = e − z 2 4 2 π ∫ − ∞ + ∞ e − u 2 d u                      # u 和 x 的取值范围没有变化 \begin{align} f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z-x) dx &= \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2 +(z-x)^2}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2 + z^2 - 2zx + x^2}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2x^2 + z^2 - 2zx}{2}} dx\\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2x^2 + \frac{z^2}{2} - 2zx + \frac{z^2}{2}}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2(x^2-zx+\frac{z^2}{4}) + \frac{z^2}{2}}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2(x^2-zx+\frac{z^2}{4})}{2}} \cdot e^{-\frac{z^2}{4}} dx \\ &= \frac{e^{-\frac{z^2}{4}}}{2\pi} \int_{-\infty}^{+\infty} e^{-(x^2-zx+\frac{z^2}{4})} dx \ \ \ \ \ \ \ \ \# 令u=x-\frac{z}{2},则u^2 = x^2-xz+\frac{z^2}{4},du=dx\\ &= \frac{e^{-\frac{z^2}{4}}}{2\pi} \int_{-\infty}^{+\infty} e^{-u^2} du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \#u和x的取值范围没有变化 \end{align} fZ(z)=+fX(x)fY(zx)dx=+2π1e2x2+(zx)2dx=2π1+e2x2+z22zx+x2dx=2π1+e22x2+z22zxdx=2π1+e22x2+2z22zx+2z2dx=2π1+e22(x2zx+4z2)+2z2dx=2π1+e22(x2zx+4z2)e4z2dx=2πe4z2+e(x2zx+4z2)dx        #u=x2z,u2=x2xz+4z2,du=dx=2πe4z2+eu2du                    #ux的取值范围没有变化
这里补充个重要的等式: ∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi} +ex2dx=π ,所以:

f Z ( z ) = 1 2 π ⋅ e − z 2 4 ⋅ π = 1 2 π ⋅ e − z 2 4 = 1 2 π 2 ⋅ e − ( z − 0 ) 2 2 ( 2 ) 2 f_Z(z) = \frac{1}{2\pi} \cdot e^{-\frac{z^2}{4}} \cdot \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} \cdot e^{-\frac{z^2}{4}} = \frac{1}{\sqrt{2\pi} \sqrt{2}} \cdot e^{-\frac{(z-0)^2}{2(\sqrt{2})^2}} fZ(z)=2π1e4z2π =2π 1e4z2=2π 2 1e2(2 )2(z0)2

即: Z ∼ N ( 0 , 2 ) Z \sim N(0,2) ZN(0,2)

★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★

一般地, X ∼ N ( μ , σ 1 2 ) ,    Y ∼ N ( μ , σ 2 2 ) X \sim N(\mu,\sigma_1^2),\ \ Y \sim N(\mu, \sigma_2^2) XN(μ,σ12),  YN(μ,σ22) X X X Y Y Y相互独立,则 Z = X + Y Z = X+Y Z=X+Y仍然服从正态分布, Z ∼ N ( μ 1 + μ 2 ,   σ 1 2 + σ 2 2 ) Z \sim N(\mu_1 + \mu_2,\ \sigma_1^2 + \sigma_2^2) ZN(μ1+μ2, σ12+σ22);且可推广到 n n n个或无限个独立正态分布的随机变量的情形,即:

X i ∼ N ( μ i ,   σ i 2 ) ,    i = 1 , 2 , . . . , n , . . . X_i \sim N(\mu_i,\ \sigma_i^2),\ \ i=1,2,...,n,... XiN(μi, σi2),  i=1,2,...,n,...且它们之间是相互独立的则可知: X 1 + X 2 + . . . + X n ∼ N ( ∑ i = 1 n μ i ,   ∑ i = 1 n σ i 2 ) X_1+X_2+...+X_n \sim N(\sum_{i=1}^{n} \mu_i,\ \sum_{i=1}^{n} \sigma_i^2) X1+X2+...+XnN(i=1nμi, i=1nσi2)且更进一步证明任意有限个独立正态随机变量的线性组合仍服从正态分布,即:

X k ∼ N ( μ k ,   σ k 2 ) ,    k = 1 , 2 , . . . , n X_k \sim N(\mu_k,\ \sigma_k^2),\ \ k=1,2,...,n XkN(μk, σk2),  k=1,2,...,n且它们之间是相互独立的则可知: a 1 X 1 + a 2 X 2 + . . . + a n X n ∼ N ( ∑ i = 1 n a i μ i ,   ∑ i = 1 n ( a i σ i ) 2 ) a_1X_1+a_2X_2+...+a_nX_n \sim N(\sum_{i=1}^{n} a_i\mu_i,\ \sum_{i=1}^{n} (a_i\sigma_i)^2) a1X1+a2X2+...+anXnN(i=1naiμi, i=1n(aiσi)2),其中 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an为任意实数。

这里是很重要的结论!!

例7:设 X ∼ N ( 0 , 1 ) ,   Y ∼ N ( 1 , 1 ) ,   Z ∼ N ( 1 , 2 ) X \sim N(0,1),\ Y \sim N(1,1),\ Z \sim N(1,2) XN(0,1), YN(1,1), ZN(1,2),随机变量 X , Y , Z X,Y,Z X,Y,Z间相互独立,求 3 X + 2 Y + Z 3X+2Y+Z 3X+2Y+Z的分布。

解:由于随机变量 X , Y , Z X,Y,Z X,Y,Z间相互独立且都服从中泰分布,则:

KaTeX parse error: Undefined control sequence: \cp at position 17: …X+2Y+Z \sim N(3\̲c̲p̲ ̲0+2\cp 1+ 1\cp …

教材上结果是 N ( 3 , 15 ) N(3,15) N(3,15)明显是错误的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Arthur古德曼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值