3 两个随机变量的概率分布
3.1 两个离散型随机变量的函数的函数分布
例1:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布律为:
X | Y | Y | Y |
---|---|---|---|
X | 1 | 2 | 3 |
1 | 1 4 \frac{1}{4} 41 | 1 6 \frac{1}{6} 61 | 1 8 \frac{1}{8} 81 |
2 | 1 4 \frac{1}{4} 41 | 1 8 \frac{1}{8} 81 | 1 12 \frac{1}{12} 121 |
求:(1) Z 1 = X + Y Z_1 = X + Y Z1=X+Y的分布律;
(2) Z 2 = X Y Z_2 = XY Z2=XY的分布律;
(3) P { X = Y } P\{X = Y\} P{X=Y}。
解:(1) Z 1 Z_1 Z1可能的取值为 { 1 , 2 } + { 1 , 2 , 3 } = { 2 , 3 , 4 , 5 } \{1,2\} + \{1,2,3\} = \{2,3,4,5\} {1,2}+{1,2,3}={2,3,4,5};
事件 { Z 1 = 2 } \{Z_1 = 2 \} {Z1=2}的概率为: P { Z 1 = 2 } = P { X = 1 , Y = 1 } = 1 4 P\{Z_1 = 2\} = P\{X = 1, Y = 1\} = \frac{1}{4} P{Z1=2}=P{X=1,Y=1}=41;
事件 { Z 1 = 3 } \{Z_1 = 3 \} {Z1=3}的概率为: P { Z 1 = 3 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 1 } = 5 12 P\{Z_1 = 3\} = P\{X = 1, Y = 2\} + P\{X=2, Y=1\} = \frac{5}{12} P{Z1=3}=P{X=1,Y=2}+P{X=2,Y=1}=125;
事件 { Z 1 = 4 } \{Z_1 = 4 \} {Z1=4}的概率为: P { Z 1 = 4 } = P { X = 1 , Y = 3 } + P { X = 2 , Y = 2 } = 1 4 P\{Z_1 = 4\} = P\{X = 1, Y = 3\} + P\{X =2, Y =2\} = \frac{1}{4} P{Z1=4}=P{X=1,Y=3}+P{X=2,Y=2}=41;
事件 { Z 1 = 5 } \{Z_1 = 5 \} {Z1=5}的概率为: P { Z 1 = 5 } = P { X = 2 , Y = 3 } = 1 12 P\{Z_1 = 5\} = P\{X = 2, Y = 3\} = \frac{1}{12} P{Z1=5}=P{X=2,Y=3}=121;
因此, Z 1 = X + Y Z_1 = X + Y Z1=X+Y的分布律为:
Z 1 Z_1 Z1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|
P | 1 4 \frac{1}{4} 41 | 5 12 \frac{5}{12} 125 | 1 4 \frac{1}{4} 41 | 1 12 \frac{1}{12} 121 |
(2) Z 2 Z_2 Z2的取值可能为 1 , 2 , 3 , 4 , 6 1,2,3,4,6 1,2,3,4,6概率分别为:
P { Z 2 = 1 } = P { X = 1 , Y = 1 } = 1 4 P\{Z_2 = 1\} = P\{X=1, Y=1\} = \frac{1}{4} P{Z2=1}=P{X=1,Y=1}=41
P { Z 2 = 2 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 1 } = 5 12 P\{Z_2 = 2\} = P\{X=1, Y=2\} + P\{X=2, Y=1\} = \frac{5}{12} P{Z2=2}=P{X=1,Y=2}+P{X=2,Y=1}=125
P { Z 2 = 3 } = P { X = 1 , Y = 3 } = 1 8 P\{Z_2 = 3\} = P\{X=1, Y=3\} = \frac{1}{8} P{Z2=3}=P{X=1,Y=3}=81
P { Z 2 = 4 } = P { X = 2 , Y = 2 } = 1 8 P\{Z_2 = 4\} = P\{X=2, Y=2\} = \frac{1}{8} P{Z2=4}=P{X=2,Y=2}=81
P { Z 2 = 6 } = P { X = 2 , Y = 3 } = 1 12 P\{Z_2 = 6\} = P\{X=2, Y=3\} = \frac{1}{12} P{Z2=6}=P{X=2,Y=3}=121
于是, Z 2 = X Y Z_2 = XY Z2=XY的概率分布律为:
Z 2 Z_2 Z2 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
P | 1 4 \frac{1}{4} 41 | 5 12 \frac{5}{12} 125 | 1 8 \frac{1}{8} 81 | 1 8 \frac{1}{8} 81 | 1 12 \frac{1}{12} 121 |
(3)事件 { X = Y } = { X = 1 , Y = 1 } ∪ { X = 2 , Y = 2 } \{X = Y\} = \{X=1, Y =1\} \cup \{X=2, Y=2\} {X=Y}={X=1,Y=1}∪{X=2,Y=2};因此:
P { X = Y } = P { X = 1 , Y = 1 } + P { X = 2 , Y = 2 } = 3 8 P\{X = Y\} = P\{X=1, Y=1\} + P\{X=2, Y =2\} =\frac{3}{8} P{X=Y}=P{X=1,Y=1}+P{X=2,Y=2}=83
例2:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布律为:
X | Y | Y | Y |
---|---|---|---|
X | 1 | 2 | 3 |
1 | 1 5 \frac{1}{5} 51 | 0 0 0 | 1 5 \frac{1}{5} 51 |
2 | 1 5 \frac{1}{5} 51 | 1 5 \frac{1}{5} 51 | 1 5 \frac{1}{5} 51 |
求:(1) Z = X − Y Z=X-Y Z=X−Y的分布律; (2) P { X < Y } P\{X \lt Y\} P{X<Y}
解:(1) Z Z Z可能的取值为 { 0 , − 1 , − 2 , 1 } \{0,-1,-2,1\} {0,−1,−2,1},概率分别为:
P { Z = − 2 } = P { X = 1 , Y = 3 } = 1 5 P\{Z = -2\} = P\{X = 1, Y=3\} = \frac{1}{5} P{Z=−2}=P{X=1,Y=3}=51
P { Z = − 1 } = P { X = 1 , Y = 2 } + P { X = 2 , Y = 3 } = 1 5 P\{Z = -1\} = P\{X =1,Y=2\} + P\{X=2,Y=3\} = \frac{1}{5} P{Z=−1}=P{X=1,Y=2}+P{X=2,Y=3}=51
P { Z = 0 } = P { X = 1 , Y = 1 } + P { X = 2 , Y = 2 } = 2 5 P\{Z = 0\} = P\{X=1, Y =1\} + P\{X=2,Y=2\} = \frac{2}{5} P{Z=0}=P{X=1,Y=1}+P{X=2,Y=2}=52
P { Z = 1 } = P { X = 2 , Y = 1 } = 1 5 P\{Z=1\} = P\{X=2,Y=1\} = \frac{1}{5} P{Z=1}=P{X=2,Y=1}=51
于是, Z = X − Y Z=X-Y Z=X−Y的分布律为:
Z | -2 | -1 | 0 | 1 |
---|---|---|---|---|
P | 1 5 \frac{1}{5} 51 | 1 5 \frac{1}{5} 51 | 2 5 \frac{2}{5} 52 | 1 5 \frac{1}{5} 51 |
(2)事件 { X < Y } = { X = 1 , Y = 2 } ∪ { X = 1 , Y = 3 } ∪ { X = 2 , Y = 3 } \{X \lt Y\} = \{X=1,Y=2\} \cup \{X=1,Y=3\} \cup \{X=2, Y=3\} {X<Y}={X=1,Y=2}∪{X=1,Y=3}∪{X=2,Y=3},所以:
P { X < Y } = P { X = 1 , Y = 2 } + P { X = 1 , Y = 3 } + P { X = 2 , Y = 3 } = 2 5 P\{X \lt Y\} = P\{X=1,Y=2\} + P\{X=1,Y=3\} + P\{X=2, Y=3\} = \frac{2}{5} P{X<Y}=P{X=1,Y=2}+P{X=1,Y=3}+P{X=2,Y=3}=52
也可以根据 Z = X − Y Z=X-Y Z=X−Y的分布中 Z < 0 Z \lt 0 Z<0的概率得到:
P { X < Y } = P { X − Y < 0 } = P { X − Y = − 2 } + ¶ { X − Y = − 1 } = 2 5 P\{X \lt Y\} = P\{X - Y \lt 0\} = P\{X-Y = -2\} + \P\{X-Y = -1\} = \frac{2}{5} P{X<Y}=P{X−Y<0}=P{X−Y=−2}+¶{X−Y=−1}=52
例3:设随机变量 X X X与 Y Y Y相互独立,分别服从参数为 λ 1 , λ 2 \lambda_1,\ \lambda_2 λ1, λ2的泊松分布,证明: Z = X + Y Z = X + Y Z=X+Y服从参数为 λ = λ 1 + λ 2 \lambda = \lambda_1 + \lambda_2 λ=λ1+λ2的泊松分布。
证明:由已知得:
P { X = k } = λ 1 k e − λ 1 k ! , P { Y = k } = λ 2 k e − λ 2 k ! ; k = 0 , 1 , 2 , . . . P\{X=k\} = \frac{\lambda_1^k e^{-\lambda_1}}{k!},\ \ P\{Y=k\} = \frac{\lambda_2^k e^{-\lambda_2}}{k!};\ \ k=0,1,2,... P{X=k}=k!λ1ke−λ1, P{Y=k}=k!λ2ke−λ2; k=0,1,2,...
事件 { Z = k } = { X = 0 , Y = k } ∪ { X = 1 , Y = k − 1 } ∪ . . . ∪ { X = k , Y = 0 } \{Z=k\} = \{X=0,Y=k\} \cup \{X=1,Y=k-1\} \cup ... \cup \{X=k,Y=0\} {Z=k}={X=0,Y=k}∪{X=1,Y=k−1}∪...∪{X=k,Y=0}则:
P { Z = k } = P { X = 0 , Y = k } + P { X = 1 , Y = k − 1 } + . . . + P { X = k , Y = 0 } = ∑ i = 0 k P { X = i , Y = k − i } P\{Z=k\} = P\{X=0,Y=k\} + P\{X=1,Y=k-1\} + ... + P\{X=k,Y=0\} = \sum_{i=0}^{k} P\{X=i, Y=k-i\} P{Z=k}=P{X=0,Y=k}+P{X=1,Y=k−1}+...+P{X=k,Y=0}=∑i=0kP{X=i,Y=k−i}
因为 X X X与 Y Y Y相互独立,所以:
P
{
X
=
i
,
Y
=
k
−
i
}
=
P
{
X
=
i
}
⋅
P
{
Y
=
k
−
i
}
P\{X=i,Y=k-i\} = P\{X=i\} \cdot P\{Y=k-i\}
P{X=i,Y=k−i}=P{X=i}⋅P{Y=k−i} 因此:
P
{
Z
=
k
}
=
∑
i
=
0
k
P
{
X
=
i
}
⋅
P
{
Y
=
k
−
i
}
=
∑
i
=
0
k
λ
1
i
e
−
λ
1
i
!
⋅
λ
2
k
−
i
e
−
λ
2
(
k
−
i
)
!
=
∑
i
=
0
k
λ
1
i
e
−
λ
1
i
!
⋅
λ
2
k
−
i
e
−
λ
2
(
k
−
i
)
!
⋅
k
!
k
!
=
e
−
(
λ
1
+
λ
2
)
⋅
1
k
!
⋅
∑
i
=
0
k
k
!
i
!
(
k
−
i
)
!
λ
1
i
λ
2
k
−
i
=
e
−
(
λ
1
+
λ
2
)
⋅
1
k
!
⋅
∑
i
=
0
k
C
k
i
λ
1
i
λ
2
k
−
i
=
e
−
(
λ
1
+
λ
2
)
(
λ
1
+
λ
2
)
k
k
!
,
k
=
0
,
1
,
2
,
.
.
.
=
e
−
λ
λ
k
k
!
,
k
=
0
,
1
,
2
,
.
.
.
\begin{align} P\{Z=k\} &= \sum_{i=0}^{k} P\{X=i\} \cdot P\{Y=k-i\} \\ &= \sum_{i=0}^{k} \frac{\lambda_1^i e^{-\lambda_1}}{i!} \cdot \frac{\lambda_2^{k-i} e^{-\lambda_2}}{(k-i)!} \\ &= \sum_{i=0}^{k} \frac{\lambda_1^i e^{-\lambda_1}}{i!} \cdot \frac{\lambda_2^{k-i} e^{-\lambda_2}}{(k-i)!} \cdot \frac{k!}{k!} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \cdot \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_1^i \lambda_2^{k-i} \\ &= e^{-(\lambda_1 + \lambda_2)} \cdot \frac{1}{k!} \cdot \sum_{i=0}^{k} C_k^i \lambda_1^i \lambda_2^{k-i} \\ &= \frac{ e^{-(\lambda_1 + \lambda_2)} (\lambda_1 + \lambda_2)^k }{k!} \ \ \ \ \ \ \ \ ,k=0,1,2,... \\ &= \frac{ e^{-\lambda} \lambda^k }{k!} \ \ \ \ \ \ \ \ ,k=0,1,2,... \end{align}
P{Z=k}=i=0∑kP{X=i}⋅P{Y=k−i}=i=0∑ki!λ1ie−λ1⋅(k−i)!λ2k−ie−λ2=i=0∑ki!λ1ie−λ1⋅(k−i)!λ2k−ie−λ2⋅k!k!=e−(λ1+λ2)⋅k!1⋅i=0∑ki!(k−i)!k!λ1iλ2k−i=e−(λ1+λ2)⋅k!1⋅i=0∑kCkiλ1iλ2k−i=k!e−(λ1+λ2)(λ1+λ2)k ,k=0,1,2,...=k!e−λλk ,k=0,1,2,...
因此,
Z
=
X
+
Y
Z = X + Y
Z=X+Y服从参数为
λ
=
λ
1
+
λ
2
\lambda = \lambda_1 + \lambda_2
λ=λ1+λ2的泊松分布。
3.2 两个相互独立的连续型随机变量之和的概率分布
例4:设
X
X
X与
Y
Y
Y是两个相互独立的连续型随机变量,
X
X
X在
[
0
,
1
]
[0,1]
[0,1]上服从均匀分布,
Y
Y
Y的概率密度为:
f
Y
(
y
)
=
{
1
2
e
1
2
y
,
y
>
0
0
,
y
≤
0
f_Y(y) = \begin{cases} \frac{1}{2} e^{\frac{1}{2} y},\ \ \ \ \ \ \ \ &y \gt 0 \\ 0,\ \ \ \ \ \ \ \ &y \le 0 \end{cases}
fY(y)={21e21y, 0, y>0y≤0
求:(1)
(
X
,
Y
)
(X,Y)
(X,Y)的概率密度;(2)
P
{
X
+
Y
≤
1
}
P\{X+Y \le 1\}
P{X+Y≤1};(3)
P
{
X
+
Y
≤
3
}
P\{X+Y \le 3\}
P{X+Y≤3}。
解:(1)由于
X
X
X服从均匀分布,所以
X
X
X的概率密度为:
f
X
(
x
)
=
{
1
1
−
0
,
0
≤
x
≤
1
0
,
其他
=
{
1
,
0
≤
x
≤
1
0
,
其他
\begin{align} f_X(x) &= \begin{cases} \frac{1}{1-0} ,\ \ \ \ \ \ \ \ &0 \le x \le 1 \\ 0,\ \ \ \ \ \ \ \ &其他 \end{cases} \\ &= \begin{cases} 1,\ \ \ \ \ \ \ \ \ \ \ \ \ &0 \le x \le 1 \\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ &其他 \end{cases} \end{align}
fX(x)={1−01, 0, 0≤x≤1其他={1, 0, 0≤x≤1其他
又因为
X
X
X与
Y
Y
Y相互独立,所以
(
X
,
Y
)
(X,Y)
(X,Y)的概率密度为:
f
(
x
,
y
)
=
f
X
(
x
)
⋅
f
Y
(
y
)
=
{
1
2
e
−
1
2
y
,
0
≤
x
≤
1
,
y
>
0
0
,
其他
f(x,y) = f_X(x) \cdot f_Y(y) = \begin{cases} \frac{1}{2} e^{-\frac{1}{2}y} ,\ \ \ \ &0 \le x \le 1, y \gt 0\\ 0, &其他 \end{cases}
f(x,y)=fX(x)⋅fY(y)={21e−21y, 0,0≤x≤1,y>0其他
(2)利用(1)的结果;并画出二重积分的图像:
由此:
P
{
X
+
Y
≤
1
}
=
∬
X
+
Y
≤
1
f
(
x
,
y
)
d
x
d
y
=
∫
0
1
(
∫
0
1
−
x
f
(
x
,
y
)
d
y
)
d
x
=
∫
0
1
(
∫
0
1
−
x
1
2
e
−
1
2
y
d
y
)
d
x
=
∫
0
1
(
−
e
−
1
2
y
∣
0
1
−
x
)
d
x
=
∫
0
1
[
−
e
−
1
2
(
1
−
x
)
−
(
−
1
)
]
d
x
=
∫
0
1
[
1
−
e
−
1
2
(
1
−
x
)
]
d
x
#
提示:令
u
=
e
−
1
2
(
1
−
x
)
,
再使用复合函数求导的思路来解决
=
(
x
−
2
e
−
1
2
(
1
−
x
)
)
∣
0
1
=
2
e
−
1
2
−
1
\begin{align} P\{X+Y \le 1\} &= \iint_{X+Y\le1} f(x,y) dxdy \\ &= \int_{0}^{1} (\int_{0}^{1-x} f(x,y)dy)dx \\ &= \int_{0}^{1} (\int_{0}^{1-x} \frac{1}{2} e^{-\frac{1}{2}y} dy)dx \\ &= \int_{0}^{1} (-e^{-\frac{1}{2}y} | _{0}^{1-x})dx \\ &= \int_{0}^{1} [-e^{-\frac{1}{2}(1-x)} -(-1)]dx \\ &= \int_{0}^{1} [1-e^{-\frac{1}{2}(1-x)} ]dx \ \ \ \ \ \ \ \ \ \ \ \#\ 提示:令u=e^{-\frac{1}{2}(1-x)},再使用复合函数求导的思路来解决 \\ &= (x-2e^{-\frac{1}{2}(1-x)}) |_0^1 \\ &= 2e^{-\frac{1}{2}} - 1 \end{align}
P{X+Y≤1}=∬X+Y≤1f(x,y)dxdy=∫01(∫01−xf(x,y)dy)dx=∫01(∫01−x21e−21ydy)dx=∫01(−e−21y∣01−x)dx=∫01[−e−21(1−x)−(−1)]dx=∫01[1−e−21(1−x)]dx # 提示:令u=e−21(1−x),再使用复合函数求导的思路来解决=(x−2e−21(1−x))∣01=2e−21−1
书上没有这么细致,我这里尽可能地详细化每一个等式变化。
(3)与(2)计算过程基本一致;图像如下:
P { X + Y ≤ 1 } = ∬ X + Y ≤ 3 f ( x , y ) d x d y = ∫ 0 1 ( ∫ 0 3 − x f ( x , y ) d y ) d x = ∫ 0 1 ( − e − 1 2 y ∣ 0 3 − x ) d x = ∫ 0 1 [ 1 − e − 1 2 ( 3 − x ) ] d x = ( x − 2 e − 1 2 ( 3 − x ) ) ∣ 0 1 = 2 e − 3 2 − 2 e − 1 + 1 \begin{align} P\{X+Y \le 1\} &= \iint_{X+Y\le 3} f(x,y) dxdy \\ &= \int_{0}^{1} (\int_{0}^{3-x} f(x,y)dy)dx \\ &= \int_{0}^{1} (-e^{-\frac{1}{2}y} | _{0}^{3-x})dx \\ &= \int_{0}^{1} [1-e^{-\frac{1}{2}(3-x)} ]dx \\ &= (x-2e^{-\frac{1}{2}(3-x)}) |_0^1 \\ &= 2e^{-\frac{3}{2}} - 2e^{-1} + 1 \end{align} P{X+Y≤1}=∬X+Y≤3f(x,y)dxdy=∫01(∫03−xf(x,y)dy)dx=∫01(−e−21y∣03−x)dx=∫01[1−e−21(3−x)]dx=(x−2e−21(3−x))∣01=2e−23−2e−1+1
例5:设二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) f(x,y) f(x,y),关于 X , Y X,Y X,Y的边缘概率密度分别为 f X ( x ) f_X(x) fX(x)和 f Y ( y ) f_Y(y) fY(y), X X X与 Y Y Y相互独立,求 Z = X + Y Z=X+Y Z=X+Y的概率密度。
解:因为 X X X与 Y Y Y相互独立,则: f ( x , y ) = f X ( x ) ⋅ f Y ( y ) f(x,y) = f_X(x) \cdot f_Y(y) f(x,y)=fX(x)⋅fY(y); Z = X + Y Z = X+Y Z=X+Y的分布函数为:
$F_Z(z) = P{Z \le z} = P{X+Y \le z} = \iint_{x+y \le z} f(x,y) dxdy \$
接下来画图(合理假定
z
z
z是正数,实际上
z
z
z是正是负与最终结果无关的):
因此,上述等式可以转化为:
F
Z
(
z
)
=
P
{
Z
≤
z
}
=
P
{
X
+
Y
≤
z
}
=
∬
x
+
y
≤
z
f
(
x
,
y
)
d
x
d
y
=
∫
−
∞
+
∞
[
∫
−
∞
+
∞
f
(
x
,
y
)
d
y
]
d
x
=
∫
−
∞
+
∞
[
∫
−
∞
z
−
x
f
(
x
,
y
)
d
y
]
d
x
=
∫
−
∞
+
∞
[
∫
−
∞
y
的积分上限
f
(
x
,
y
)
d
y
]
d
x
=
∫
−
∞
+
∞
[
∫
−
∞
z
−
x
f
(
x
,
z
−
x
)
d
y
]
d
x
\begin{align} F_Z(z) = P\{Z \le z\} = P\{X+Y \le z\} &= \iint_{x+y \le z} f(x,y) dxdy \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{+\infty} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{z-x} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{y的积分上限} f(x,y) dy]dx \\ &= \int_{-\infty}^{+\infty} [ \int_{-\infty}^{z-x} f(x,z-x) dy]dx \\ \end{align}
FZ(z)=P{Z≤z}=P{X+Y≤z}=∬x+y≤zf(x,y)dxdy=∫−∞+∞[∫−∞+∞f(x,y)dy]dx=∫−∞+∞[∫−∞z−xf(x,y)dy]dx=∫−∞+∞[∫−∞y的积分上限f(x,y)dy]dx=∫−∞+∞[∫−∞z−xf(x,z−x)dy]dx
因此:
f
Z
(
z
)
=
F
Z
′
(
z
)
=
∫
−
∞
+
∞
f
(
x
,
z
−
x
)
d
x
f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx
fZ(z)=FZ′(z)=∫−∞+∞f(x,z−x)dx;
同理: f Z ( z ) = F Z ′ ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy fZ(z)=FZ′(z)=∫−∞+∞f(z−y,y)dy。
当 X X X与 Y Y Y相互独立时可以表示为:
$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(x,z-x) dx = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z-x) dx $;
$f_Z(z) = {F_Z}'(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy = \int_{-\infty}^{+\infty} f_X(z-y) \cdot f_Y(y) dy $。
这也被称作:独立随机变量和的卷积公式。
例6:设随机变量 X X X与 Y Y Y相互独立,都服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),求 Z = X + Y Z=X+Y Z=X+Y的概率密度。
解:由题目知, X X X与 Y Y Y的概率密度分别为:
f X ( x ) = 1 2 π e − x 2 2 , − ∞ < x < + ∞ ; f Y ( y ) = 1 2 π e − y 2 2 , − ∞ < y < + ∞ f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}},\ \ -\infty \lt x \lt +\infty;\ \ \ \ f_Y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},\ \ -\infty \lt y \lt +\infty fX(x)=2π1e−2x2, −∞<x<+∞; fY(y)=2π1e−2y2, −∞<y<+∞
又因 X X X与 Y Y Y相互独立,所以 ( X , Y ) (X,Y) (X,Y)的概率密度为:
f ( x , y ) = f X ( x ) ⋅ f Y ( y ) = 1 2 π e − x 2 + y 2 2 , − ∞ < x , y < + ∞ f(x,y) = f_X(x) \cdot f_Y(y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}},\ \ -\infty \lt x,y \lt +\infty f(x,y)=fX(x)⋅fY(y)=2π1e−2x2+y2, −∞<x,y<+∞
得
Z
=
X
+
Y
Z=X+Y
Z=X+Y的概率为:
f
Z
(
z
)
=
∫
−
∞
+
∞
f
X
(
x
)
⋅
f
Y
(
z
−
x
)
d
x
=
∫
−
∞
+
∞
1
2
π
e
−
x
2
+
(
z
−
x
)
2
2
d
x
=
1
2
π
∫
−
∞
+
∞
e
−
x
2
+
z
2
−
2
z
x
+
x
2
2
d
x
=
1
2
π
∫
−
∞
+
∞
e
−
2
x
2
+
z
2
−
2
z
x
2
d
x
=
1
2
π
∫
−
∞
+
∞
e
−
2
x
2
+
z
2
2
−
2
z
x
+
z
2
2
2
d
x
=
1
2
π
∫
−
∞
+
∞
e
−
2
(
x
2
−
z
x
+
z
2
4
)
+
z
2
2
2
d
x
=
1
2
π
∫
−
∞
+
∞
e
−
2
(
x
2
−
z
x
+
z
2
4
)
2
⋅
e
−
z
2
4
d
x
=
e
−
z
2
4
2
π
∫
−
∞
+
∞
e
−
(
x
2
−
z
x
+
z
2
4
)
d
x
#
令
u
=
x
−
z
2
,
则
u
2
=
x
2
−
x
z
+
z
2
4
,
d
u
=
d
x
=
e
−
z
2
4
2
π
∫
−
∞
+
∞
e
−
u
2
d
u
#
u
和
x
的取值范围没有变化
\begin{align} f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) \cdot f_Y(z-x) dx &= \int_{-\infty}^{+\infty} \frac{1}{2\pi} e^{-\frac{x^2 +(z-x)^2}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2 + z^2 - 2zx + x^2}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2x^2 + z^2 - 2zx}{2}} dx\\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2x^2 + \frac{z^2}{2} - 2zx + \frac{z^2}{2}}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2(x^2-zx+\frac{z^2}{4}) + \frac{z^2}{2}}{2}} dx \\ &= \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{2(x^2-zx+\frac{z^2}{4})}{2}} \cdot e^{-\frac{z^2}{4}} dx \\ &= \frac{e^{-\frac{z^2}{4}}}{2\pi} \int_{-\infty}^{+\infty} e^{-(x^2-zx+\frac{z^2}{4})} dx \ \ \ \ \ \ \ \ \# 令u=x-\frac{z}{2},则u^2 = x^2-xz+\frac{z^2}{4},du=dx\\ &= \frac{e^{-\frac{z^2}{4}}}{2\pi} \int_{-\infty}^{+\infty} e^{-u^2} du \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \#u和x的取值范围没有变化 \end{align}
fZ(z)=∫−∞+∞fX(x)⋅fY(z−x)dx=∫−∞+∞2π1e−2x2+(z−x)2dx=2π1∫−∞+∞e−2x2+z2−2zx+x2dx=2π1∫−∞+∞e−22x2+z2−2zxdx=2π1∫−∞+∞e−22x2+2z2−2zx+2z2dx=2π1∫−∞+∞e−22(x2−zx+4z2)+2z2dx=2π1∫−∞+∞e−22(x2−zx+4z2)⋅e−4z2dx=2πe−4z2∫−∞+∞e−(x2−zx+4z2)dx #令u=x−2z,则u2=x2−xz+4z2,du=dx=2πe−4z2∫−∞+∞e−u2du #u和x的取值范围没有变化
这里补充个重要的等式:
∫
−
∞
+
∞
e
−
x
2
d
x
=
π
\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}
∫−∞+∞e−x2dx=π,所以:
f Z ( z ) = 1 2 π ⋅ e − z 2 4 ⋅ π = 1 2 π ⋅ e − z 2 4 = 1 2 π 2 ⋅ e − ( z − 0 ) 2 2 ( 2 ) 2 f_Z(z) = \frac{1}{2\pi} \cdot e^{-\frac{z^2}{4}} \cdot \sqrt{\pi} = \frac{1}{2\sqrt{\pi}} \cdot e^{-\frac{z^2}{4}} = \frac{1}{\sqrt{2\pi} \sqrt{2}} \cdot e^{-\frac{(z-0)^2}{2(\sqrt{2})^2}} fZ(z)=2π1⋅e−4z2⋅π=2π1⋅e−4z2=2π21⋅e−2(2)2(z−0)2
即: Z ∼ N ( 0 , 2 ) Z \sim N(0,2) Z∼N(0,2)
★ ★ ★ ★ ★ \bigstar \bigstar \bigstar \bigstar \bigstar ★★★★★
一般地, X ∼ N ( μ , σ 1 2 ) , Y ∼ N ( μ , σ 2 2 ) X \sim N(\mu,\sigma_1^2),\ \ Y \sim N(\mu, \sigma_2^2) X∼N(μ,σ12), Y∼N(μ,σ22)且 X X X与 Y Y Y相互独立,则 Z = X + Y Z = X+Y Z=X+Y仍然服从正态分布, Z ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) Z \sim N(\mu_1 + \mu_2,\ \sigma_1^2 + \sigma_2^2) Z∼N(μ1+μ2, σ12+σ22);且可推广到 n n n个或无限个独立正态分布的随机变量的情形,即:
当 X i ∼ N ( μ i , σ i 2 ) , i = 1 , 2 , . . . , n , . . . X_i \sim N(\mu_i,\ \sigma_i^2),\ \ i=1,2,...,n,... Xi∼N(μi, σi2), i=1,2,...,n,...且它们之间是相互独立的则可知: X 1 + X 2 + . . . + X n ∼ N ( ∑ i = 1 n μ i , ∑ i = 1 n σ i 2 ) X_1+X_2+...+X_n \sim N(\sum_{i=1}^{n} \mu_i,\ \sum_{i=1}^{n} \sigma_i^2) X1+X2+...+Xn∼N(∑i=1nμi, ∑i=1nσi2)且更进一步证明任意有限个独立正态随机变量的线性组合仍服从正态分布,即:
若 X k ∼ N ( μ k , σ k 2 ) , k = 1 , 2 , . . . , n X_k \sim N(\mu_k,\ \sigma_k^2),\ \ k=1,2,...,n Xk∼N(μk, σk2), k=1,2,...,n且它们之间是相互独立的则可知: a 1 X 1 + a 2 X 2 + . . . + a n X n ∼ N ( ∑ i = 1 n a i μ i , ∑ i = 1 n ( a i σ i ) 2 ) a_1X_1+a_2X_2+...+a_nX_n \sim N(\sum_{i=1}^{n} a_i\mu_i,\ \sum_{i=1}^{n} (a_i\sigma_i)^2) a1X1+a2X2+...+anXn∼N(∑i=1naiμi, ∑i=1n(aiσi)2),其中 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an为任意实数。
这里是很重要的结论!!
例7:设 X ∼ N ( 0 , 1 ) , Y ∼ N ( 1 , 1 ) , Z ∼ N ( 1 , 2 ) X \sim N(0,1),\ Y \sim N(1,1),\ Z \sim N(1,2) X∼N(0,1), Y∼N(1,1), Z∼N(1,2),随机变量 X , Y , Z X,Y,Z X,Y,Z间相互独立,求 3 X + 2 Y + Z 3X+2Y+Z 3X+2Y+Z的分布。
解:由于随机变量 X , Y , Z X,Y,Z X,Y,Z间相互独立且都服从中泰分布,则:
KaTeX parse error: Undefined control sequence: \cp at position 17: …X+2Y+Z \sim N(3\̲c̲p̲ ̲0+2\cp 1+ 1\cp …
教材上结果是 N ( 3 , 15 ) N(3,15) N(3,15)明显是错误的。