题意:给你五个数a,b,c,d,k,令x ∈[a,b], y∈ [c,d]。求出有多少对(x,y)可以使gcd(x,y) == k。题中所有的a,b都等于1.
题解:
1. b /= k, d /= k, 这样就转换成求b,d之间有多少对互素。
2.不妨令b<=d, 那么我们枚举y,当1<=y <=b的时候,与y互素的的个数就是phi(y)。
3.当b < y <= d的时候,先将y因式分解 y = p1^k1*p2^k2···,然后用容斥求出[1,b]中与p1,p2都互素的数,这些数即是x。
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define lint __int64
#define MAXN 200000
int p[MAXN], a[MAXN], pn;
int f[MAXN], fnum; //f用来存储素因子,fnum表示素因子的个数
int l1, r1, l2, r2, k;
lint eul[MAXN]; //这里的欧拉是叠加之后的值,所以用lint
void prime ()
{
int i, j; pn = 0;
memset(a,0,sizeof(a));
for ( i = 2; i < MAXN; i++ )
{
if ( a[i] == 0 ) p[pn++] = i;
for ( j = 0; j < pn && i * p[j] < MAXN && (p[j] <= a[i] || a[i] == 0); j++ )
a[i*p[j]] = p[j];
}
}
void split ( int n )
{
fnum = 0;
while ( a[n] != 0 )
{
f[fnum++] = a[n];
lint tmp = n;
while ( tmp % a[n] == 0 ) tmp /= a[n];
n = tmp;
}
if ( n != 1 ) f[fnum++] = n;
}
void Euler ()
{
eul[1] = 0;
for ( int i = 2; i < MAXN; i++ )
{
if ( a[i] == 0 )
eul[i] = i - 1;
else
{
int k = i / a[i];
if ( k % a[i] == 0 ) eul[i] = eul[k] * a[i];
else eul[i] = eul[k] * ( a[i] - 1 );
}
}
eul[1] = 1;
for ( int i = 2; i < MAXN; i++ )
eul[i] = eul[i-1] + eul[i];
}
int In_Exclusion ( int k, int num ) //容斥原理,求出[1,b]与当前的y不互素的个数
{
if ( ! num ) return 0;
int ret = 0;
for ( int i = k; i < fnum; i++ )
ret += num / f[i] - In_Exclusion ( i + 1, num / f[i] );
return ret;
}
int main()
{
prime(); Euler();
int Case, cs;
scanf("%d",&Case);
for ( cs = 1; cs <= Case; cs++ )
{
scanf("%d%d%d%d%d",&l1,&r1,&l2,&r2,&k);
if (!k) { printf("Case %d: 0\n",cs); continue;}
if ( r1 > r2 ) swap ( r1, r2 );
r1 /= k; r2 /= k;
lint ret = eul[r1];
for ( lint i = r1 + 1; i <= r2; i++ )
{
if ( a[i] )
{
split ( i );
ret += r1 - In_Exclusion(0,r1); // [1,b]的总个数 - 与y不互素的个数
}
else ret += r1;
}
printf("Case %d: %I64d\n",cs,ret);
}
return 0;
}
容斥之版本二:
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define lint __int64
#define MAXN 200000
int p[MAXN], a[MAXN], pn;
int f[MAXN], fnum;
int l1, r1, l2, r2, k;
int limit, A; //limit = i表示i元组,A用来计数
lint eul[MAXN];
void prime ()
{
int i, j; pn = 0;
memset(a,0,sizeof(a));
for ( i = 2; i < MAXN; i++ )
{
if ( a[i] == 0 ) p[pn++] = i;
for ( j = 0; j < pn && i * p[j] < MAXN && (p[j] <= a[i] || a[i] == 0); j++ )
a[i*p[j]] = p[j];
}
}
void split ( int n )
{
fnum = 0;
while ( a[n] != 0 )
{
f[fnum++] = a[n];
lint tmp = n;
while ( tmp % a[n] == 0 ) tmp /= a[n];
n = tmp;
}
if ( n != 1 ) f[fnum++] = n;
}
void Euler ()
{
eul[1] = 0;
for ( int i = 2; i < MAXN; i++ )
{
if ( a[i] == 0 )
eul[i] = i - 1;
else
{
int k = i / a[i];
if ( k % a[i] == 0 ) eul[i] = eul[k] * a[i];
else eul[i] = eul[k] * ( a[i] - 1 );
}
}
eul[1] = 1;
for ( int i = 2; i < MAXN; i++ )
eul[i] = eul[i-1] + eul[i];
}
void DFS ( int k, int dep, int val ) //dfs用来求组合,k是下标,dep表示组合元素的个数
{
if ( dep == limit )
{
A += r1 / val;
return;
}
for ( int i = k; i < fnum; i++ )
DFS ( i + 1, dep + 1, val * f[i] );
}
int In_Exclusion ()
{
int ret = 0;
for ( int i = 1; i <= fnum; i++ )
{
A = 0;
limit = i;
DFS ( 0, 0, 1 );
if ( i & 1 ) ret += A;
else ret -= A;
}
return ret;
}
int main()
{
prime(); Euler();
int Case, cs;
scanf("%d",&Case);
for ( cs = 1; cs <= Case; cs++ )
{
scanf("%d%d%d%d%d",&l1,&r1,&l2,&r2,&k);
if (!k) { printf("Case %d: 0\n",cs); continue;}
if ( r1 > r2 ) swap ( r1, r2 );
r1 /= k; r2 /= k;
lint ret = eul[r1];
for ( lint i = r1 + 1; i <= r2; i++ )
{
if ( a[i] )
{
split ( i );
ret += r1 - In_Exclusion();
}
else ret += r1;
}
printf("Case %d: %I64d\n",cs,ret);
}
return 0;
}