python opencv Histogram 向后投影

本文介绍了如何使用Python的OpenCV库进行Histogram的后向投影,该技术常用于图像分割和目标检测,能创建一个单通道图像,使目标区域比背景更突出,适用于处理不规则形状的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用来在图片分割或者在图像里找感兴趣的目标,简单说来,它创建了一个和输入图像一样大小的图像,但是是单通道的。输出图像会有我们感兴趣的目标,但是它比其他部分更白。
可以是不规则图形

import cv2
import numpy as np

roi = cv2.imread('smallpig.jpg')
hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV)

target = cv2.imread('roi.jpg')
hsvt = cv2.cvtColor(target,cv2.COLOR_BGR2HSV)

# calculating object histogram
roihist = cv2.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )

# normalize histogram and apply backprojection
cv2.normalize(roihist,roihist,0,255,cv2.NORM_MINMAX)
dst = cv2.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)

# Now convolute with circular disc
disc = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5,5))
cv2.filter2D(dst,-1,disc,dst)

# threshold and binary AND
ret,thresh = cv2.threshold(dst,50,255,0)
thresh = cv2.merge((thresh,thresh,thresh))
res = cv2.bitwise_and(target,thresh)

res = np.vstack((target,thresh,res))
cv2.imwrite('res.jpg',res)
# cv2.imshow(res)
# cv2.waitKey(0)
# cv2.destroyAllWindows()


True
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值