codeforces544C

本文介绍了一个程序员团队在完成代码任务时如何通过完全背包算法找出所有可能的计划组合,以确保总错误数量不超过预设限制。文章详细解释了该问题的算法解决思路,并提供了一段示例代码。

Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

Let’s call a sequence of non-negative integers v1, v2, …, vn a plan, if v1 + v2 + … + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let’s call a plan good, if all the written lines of the task contain at most b bugs in total.

Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

Input
The first line contains four integers n, m, b, mod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

The next line contains n space-separated integers a1, a2, …, an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

Output
Print a single integer — the answer to the problem modulo mod.

Example
Input
3 3 3 100
1 1 1
Output
10
Input
3 6 5 1000000007
1 2 3
Output
0
Input
3 5 6 11
1 2 1
Output
0

这道题是完全背包问题,只不过为了不重复,是一件一件物品更新而已,外层枚举个数,内层套一个记录权值的背包,就可以DP了,以后遇到这种取多少个都可以的分层的最大化问题或计数问题,直接上完全背包就可以了

%:pragma GCC optimize(4)
using namespace std;
#include<cstdio>
#include<iostream>
#include<cstring>
#define N 505
long long n,mm,k;
long long mod;
long long dp[N*5][N*5];
long long tot;
long long a[N];
long long m[N*5];
long long v[N*5];
int it[N];
int num=0;
int sum;
int cnt;
int main()
{
    cin>>n>>mm>>k>>mod;
    for(int i=1;i<=n;i++) cin>>a[i];
    it[1]=1;num=1;sum=1;
    for(int i=1;i<=n;i++)
    {
        m[++cnt]=a[i];
        v[cnt]=1;
    }
    dp[0][0]=1;
    for(int i=1;i<=cnt;i++)
    {
        for(int hh=0;hh<=mm-v[i];hh++)
        {
            for(int j=k+1;j>=0;j--)
            {
                dp[hh+v[i]][min(j+m[i],k+1)]+=dp[hh][j];
                dp[hh+v[i]][min(j+m[i],k+1)]%=mod;
            }   
        }
    }
    long long res=0;
    for(int i=0;i<=k;i++) {res+=dp[mm][i];res=res%mod;}
    cout<<res;
}
### Codeforces Problem 1332C Explanation The provided references pertain specifically to problem 742B on Codeforces rather than problem 1332C. For an accurate understanding and solution approach for problem 1332C, it's essential to refer directly to its description and constraints. However, based on general knowledge regarding competitive programming problems found on platforms like Codeforces: Problem 1332C typically involves algorithmic challenges that require efficient data structures or algorithms such as dynamic programming, graph theory, greedy algorithms, etc., depending upon the specific nature of the task described within this particular question[^6]. To provide a detailed explanation or demonstration concerning **Codeforces problem 1332C**, one would need direct access to the exact statement associated with this challenge since different tasks demand tailored strategies addressing their unique requirements. For obtaining precise details about problem 1332C including any sample inputs/outputs along with explanations or solutions, visiting the official Codeforces website and navigating to contest number 1332 followed by examining section C is recommended. ```python # Example pseudo-code structure often seen in solving competitive coding questions. def solve_problem_1332C(input_data): # Placeholder function body; actual logic depends heavily on the specifics of problem 1332C. processed_result = process_input(input_data) final_answer = compute_solution(processed_result) return final_answer input_example = "Example Input" print(solve_problem_1332C(input_example)) ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值