首先由于我们很难直接求解边集之交为S的树的个数,所以考虑容斥,转化成至少交S,这里需要推一波式子,然后利用组合意义,转化成一个连通块内给一个点染色,就可以O(n) DP了。
这类题能够转化成包含的好算一定要尝试着去凑一下,很有可能可以出奇迹。
然后再推一推就可以推出一个多项式exp的式子啦,感觉还是很妙妙的QAQ。
prufer序列那一部分可以用生成函数的exp来推。
#include <bits/stdc++.h>
using namespace std;
const int N = 2e6 + 5;
const int M = N * 2;
const int mod = 998244353;
#define SZ(x) (int) x.size()
#define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
#define PER(i, a, b) for(int i = (a); i >= (b); -- i)
#define lc (no << 1)
#define rc (no << 1 | 1)
#define getmid int mid = (L[no] + R[no]) >> 1
int n, m, x, y, fir[N], ne[M], to[M], cnt, K, dp[N][2], now2, tmp[2], fac[N], inv[N];
const int i2 = (mod + 1) / 2;
int I[N];
const int g = 3;
vector <int> now;
namespace {
int add(int x) {return (x >= mod) ? x - mod : x;}
int sub(int x) {return (x < 0) ? x + mod : x;}
void Add(int &x, int y) {x = add(x + y);}
void Sub(int &x, int y) {x = sub(x - y);}
int Pow(int x, long long y = mod - 2) {
int res = 1;
for(; y; y >>= 1, x = 1LL * x * x % mod) {
if(y & 1) {
res = 1LL * res * x % mod;
}
}
return res;
}
}
namespace FFT {
int C[N], D[N], rev[N];
void DFT(int *A, int up) {
for(int i = 0; i < (1 << up); ++ i)
rev[i] = rev[i >> 1] >> 1 | ((i & 1) * (1 << (up - 1)));
for(int i = 0; i < (1 << up); ++ i)
if(i < rev[i]) swap(A[i], A[rev[i]]);
for(int i = 0; i < up; ++ i) {
int wn = Pow(g, (mod - 1) / (1 << (i + 1)));
for(int j = 0; j < (1 << up); j += (1 << (i + 1))) {
int w = 1;
for(int k = j; k < j + (1 << i); ++ k) {
int L = A[k], R = 1LL * w * A[k + (1 << i)] % mod;
A[k] = add(L + R);
A[k + (1 << i)] = sub(L - R);
w = 1LL * w * wn % mod;
}
}
}
}
void IDFT(int *A, int up) {
reverse(A + 1, A + (1 << up));
DFT(A, up);
int now = Pow(1 << up);
for(int i = 0; i < (1 << up); ++ i)
A[i] = 1LL * A[i] * now % mod;
}
vector <int> fixlen(vector <int> A, int len) {
while(A.size() > len) A.pop_back();
return A;
}
vector <int> operator * (vector <int> A, vector <int> B) {
vector <int> ans; ans.clear();
ans.resize(A.size() + B.size() - 1);
int up = 0; while((1 << up) < ans.size()) ++ up;
for(int i = 0; i < min((1 << (up + 1)), N); ++ i) C[i] = D[i] = 0;
REP(i, 0, SZ(A) - 1) C[i] = A[i]; REP(i, 0, SZ(B) - 1) D[i] = B[i];
DFT(C, up); DFT(D, up);
REP(i, 0, (1 << up) - 1) C[i] = 1LL * C[i] * D[i] % mod;
IDFT(C, up); REP(i, 0, SZ(ans) - 1) ans[i] = C[i];
return ans;
}
vector <int> operator - (vector <int> A, vector <int> B) {
while(A.size() < B.size()) A.push_back(0);
REP(i, 0, SZ(B) - 1) A[i] = sub(A[i] - B[i]);
return A;
}
vector <int> operator + (vector <int> A, vector <int> B) {
while(A.size() < B.size()) A.push_back(0);
REP(i, 0, SZ(B) - 1) A[i] = add(A[i] + B[i]);
return A;
}
vector <int> cons(int x) {
vector <int> res; res.clear();
res.push_back(x);
return res;
}
void out(vector <int> who) {
for(int i = 0; i < (int) who.size(); ++ i) cerr << who[i] <<" ";
puts("--");
}
vector <int> inv(vector <int> A) {
vector <int> B = cons(Pow(A[0]));
while(B.size() < A.size()) B = fixlen((cons(2) - A * B) * B, B.size() * 2);
return fixlen(B, A.size());
}
vector <int> Sqrt(vector <int> A) {
vector <int> B; if(A[0] == 1) B.push_back(1); else throw;
while(B.size() < A.size()) {
int nlen = B.size() * 2;
vector <int> tmp1 = fixlen(B * B, nlen);
tmp1 = fixlen(tmp1 + A, nlen); B = inv(B);
tmp1 = fixlen(tmp1 * B, nlen);
for(int i = 0; i < (int) tmp1.size();++ i) tmp1[i] = 1LL * i2 * tmp1[i] % mod;
swap(B, tmp1);
}
return fixlen(B, A.size());
}
vector <int> Dao(vector <int> A) {
vector <int> B; B.clear();
for(int i = 1; i < (int) A.size(); ++ i) B.push_back(1LL * A[i] * i % mod);
return B;
}
vector <int> Ji(vector <int> A) {
vector <int> B = cons(0);
for(int i = 0; i < (int) A.size(); ++ i)
B.push_back(1LL * I[i + 1] * A[i] % mod);
return B;
}
vector <int> Ln(vector <int> A) {
return fixlen(Ji(inv(A) * Dao(A)), A.size());
}
vector <int> exp(vector <int> A) {
vector <int> f = cons(1);
while(f.size() <= A.size() * 2) f = fixlen(f * (cons(1) + A - Ln(f)), 2 * f.size());
return fixlen(f, A.size());
}
}
void add(int x, int y) {
ne[++ cnt] = fir[x];
fir[x] = cnt;
to[cnt] = y;
}
void link(int x, int y) {
add(x, y);
add(y, x);
}
#define Foreachson(i, x) for(int i = fir[x]; i; i = ne[i])
map <pair <int, int>, int> Map;
void dfs(int x, int f) {
dp[x][1] = dp[x][0] = 1;
Foreachson(i, x) {
int V = to[i];
if(V == f) continue;
dfs(V, x);
memset(tmp, 0, sizeof(tmp));
for(int a = 0; a < 2; ++ a) {
for(int b = 0; b < 2; ++ b) {
if(a && b) continue;
if(!b) {
Add(tmp[a | b], 1LL * now2 * dp[x][a] % mod * dp[V][b] % mod);
continue;
}
Add(tmp[0], 1LL * dp[x][a] % mod * dp[V][b] % mod);
Add(tmp[1], 1LL * now2 * dp[x][a] % mod * dp[V][b] % mod);
}
}
//cerr << x <<" " << V <<" " << tmp[0] << " " << tmp[1] << " " << now << " " << dp[x][0] <<" " << dp[x][1] << " " << dp[V][0] <<" " << dp[V][1] << endl;
dp[x][0] = tmp[0]; dp[x][1] = add(1LL * dp[x][1] * dp[V][1] % mod +tmp[1]);
}
}
int main() {
freopen("tree.in", "r", stdin);
freopen("tree.out", "w", stdout);
fac[0] = 1;
for(int i = 1; i < N; ++ i) fac[i] = 1LL * fac[i - 1] * i % mod;
inv[N - 1] = Pow(fac[N - 1]);
for(int i = N - 2; i >= 0; -- i) inv[i] = 1LL * (i + 1) * inv[i + 1] % mod;
for(int i = 1; i < N; ++ i) I[i] = 1LL * inv[i] * fac[i - 1] % mod, assert(1ll * I[i] * i % mod == 1);
int opt;
cin >> n >> K >> opt;
if(opt == 0) {
for(int i = 1; i < n; ++ i) {
scanf("%d%d", &x, &y); if(x > y) swap(x, y);
Map[make_pair(x, y)] = 1;
}
int tot = n;
for(int i = 1; i < n; ++ i) {
scanf("%d%d", &x, &y);
if(x > y) swap(x, y);
if(Map[make_pair(x, y)]) -- tot;
}
printf("%d\n", Pow(K, tot));
}
else if(opt == 1) {
for(int i = 1; i < n; ++ i) scanf("%d%d", &x, &y), link(x, y);
now2 = 1LL * sub(1 - K) * Pow(K) % mod * Pow(n) % mod;
dfs(1, 0);
printf("%lld\n", 1LL * dp[1][1] * Pow(K, n) % mod * Pow(n, n - 2) % mod);
}
else {
if(K == 1) {
cout << Pow(Pow(n, n - 2), 2) <<endl;
return 0;
}
vector <int> A; A.clear();
A.push_back(0);
now2 = 1LL * sub(1 - K) * Pow(K) % mod * Pow(n) % mod;
int Now = Pow(now2);
//cerr << inv[2] << endl;
for(int i = 1; i <= n; ++ i) {
A.push_back(1LL * Now * inv[i] % mod * Pow(i, i) % mod * n % mod);
}
//for(int i = 0; i < (int) A.size(); ++ i) cerr << A[i] << " ";
//cerr << endl;
A = FFT :: exp(A);
//for(int i = 0; i < (int) A.size(); ++ i) cerr << A[i] <<" ";
//cerr << endl;
int ans = A[n];
cout << 1LL * ans * fac[n] % mod
* Pow(sub(1 - K), n) % mod * Pow(Pow(n, 4)) % mod << endl;
}
}
本文探讨了一种复杂树状结构中特定子结构计数的方法,通过容斥原理和组合数学技巧,将问题转化为连通块内的节点染色问题,并使用动态规划进行高效解决。此外,还详细介绍了如何利用生成函数的指数形式来处理prufer序列,以解决更广泛的树形结构计数问题。
702





