AC自动机——棋局定式

本文介绍了一个用于识别棋局中特定定式的算法实现。通过对大量棋局步骤进行预处理建立自动机,该算法能在给定的棋局中找出所有包含的已知定式。文中提供了一个具体的实现示例,并附带了代码。

JLOI棋局定式
在“jloi-08”游戏中,还存有非常非常多的棋局定式,也就是常会用到的下棋的组合。有时在学习一个著名棋局时,电脑会考一考刘先生:在这局棋里面,有多少个定式啊?分别是什么啊?
  
  对于30~40步的普通棋局,刘先生还能回答出来,可是有时候2个实力相当的大牛下的棋局,2000000步都有可能。如果电脑对这样的棋局提上面的问题时,刘先生就必须写一个程序来帮助自己了。可是,刘先生在这方面却…,怎么写也写不对。你能帮助刘先生吗?
  
  棋局是由很多step组成的,而step是由一个字符串组成的,比如Kh2或者是Nxb7。
前者表示K(king)移动至h2格,后者表示N(knight)移动至b7格并吃掉原有的棋子。
  
  第一个字符可能有6种:K Q B N R P,而后面可能是一个坐标或者是字符x后跟一个坐标。
  
  坐标是由一个小写英文字母(a~h)和一个数字(1~8)组成的。
  
  如果一个棋局中完整地并连续地包含一个定式中所有的step,那么这个棋局便包含这个定式。

输入格式:
  第一行2个整数n, m,表示定式的个数(1<=n<=2000)以及这个棋局所包含的步数
  
  下面的n个块(block),每块包含:
   第一行一个整数k表示定式包含的步数(1<=k<=100000, ∑k<=200000)
   第二行一个字符串表示该定式的名称(长度不超过50)
   下面的k行每行一个字符串表示定式中的一步
  
  最后的m行每行一个字符串,表示棋局中的一步
输出格式:
  按照输入文件包含的定式的顺序,输出棋局包含的所有定式的名称,一个一行。
样例输入:
2 5
3
King’s Knight Opening
Pe4
Pe5
Nf3
3
Nimzowitsch Variation
Pc4
Pe5
Nf3
Pe4
Pe5
Nf3
Nc6
Bb5
样例输出:
King’s Knight Opening
时间限制:
1000
空间限制:
512000

裸的AC自动机,复习了一下。结果常数写太大,过不了—

%:pragma GCC optimize(4)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<cstdlib>
#include<queue>
#include<new>
using namespace std;
#define N 1000001
int n,m;
struct AK_machine{
    int fail[N];
    bool vis[N];
    int sz,root;
    char mark[2001][2001];
    char xv[2001];
    int move[2001][2001];
    int redance[2000001];
    int len[2001];
    int cnt;
    vector<int>num[N];
    int ans;
    char c;
    map<int,int>son[N];
    map<int,int>::iterator it;
    int hash[128][128][128];
    int clf[N];
    int KO;
    void init()
    {
        for(int i=1;i<=10000;i++)son[0][i]=1;
        root=++sz;
        cnt=0;ans=0;KO=0;
    }
    void add(int x)
    {
        scanf("%d",&len[x]);
        c=1;
        while(c!=10)c=getchar();
        cin.getline(mark[x],10001);
        int p=root;
        for(int i=1;i<=len[x];i++)
        {
            int l=0;
            c=1;
            while(c!=10)
            {
                c=getchar();if(c!=10)xv[l++]=c;
            }
//          scanf("%s",xv);
            if(l==2){xv[2]=xv[1];xv[1]='#';}
            if(!hash[xv[0]][xv[1]][xv[2]]) hash[xv[0]][xv[1]][xv[2]]=++cnt;
            move[x][i]=hash[xv[0]][xv[1]][xv[2]];
            if(!son[p][move[x][i]])
            {
                son[p][move[x][i]]=++sz;
            }
            p=son[p][move[x][i]];
        }
        num[p].push_back(x);
    }
    void dance()
    {
        queue<int>q;
        while(!q.empty())q.pop();
        q.push(root);
        fail[root]=0;
        while(!q.empty())
        {
            int xx=q.front();q.pop();
            for(it=son[xx].begin();it!=son[xx].end();it++)
            {
                int a=it->first;
                int b=it->second;
                int u=fail[xx];
                while(!son[u].count(a)) u=fail[u];
                fail[b]=son[u][a];
                q.push(b);
            }
        }
    }
    void doit()
    {
        for(int i=1;i<=m;i++)
        {
            int l=0;
            scanf("%s",xv);
            if(strlen(xv)==2){xv[2]=xv[1];xv[1]='#';}
            if(!hash[xv[0]][xv[1]][xv[2]]) hash[xv[0]][xv[1]][xv[2]]=++cnt;
            redance[i]=hash[xv[0]][xv[1]][xv[2]];
        }
        int temp=root,u=root,a,b,p=root;
        for(int i=1;i<=m;i++)
        {
            int k=redance[i];
            while(!son[p].count(k)) p=fail[p];
            p=son[p][k];
            temp=p;
            while(temp)
            {
                if(!vis[temp])
                {
                    int ll=num[temp].size();
                    for(int j=0;j<ll;j++)
                    {
                        clf[++ans]=num[temp][j];
                    }
                    vis[temp]=1;
                }
                temp=fail[temp];
            }
        }
        sort(clf+1,clf+ans+1);
        for(int k=1;k<=ans-1;k++)
        {
        int l=strlen(mark[clf[k]]);
        for(int j=0;j<l;j++) putchar(mark[clf[k]][j]);
        puts("");
        }
        int l=strlen(mark[clf[ans]]);
        for(int j=0;j<l;j++) putchar(mark[clf[ans]][j]);
    }
} fire_dancer;
int main()
{
    scanf("%d%d",&n,&m);
    fire_dancer.init();
    for(int i=1;i<=n;i++) fire_dancer.add(i);
    fire_dancer.dance();
    fire_dancer.doit();
}

MAP STL划水记,我们如果用!的形式就会强行增加一个元素,所以应该用count才能A

标题基于Python的汽车之家网站舆情分析系统研究AI更换标题第1章引言阐述汽车之家网站舆情分析的研究背景、意义、国内外研究现状、论文方法及创新点。1.1研究背景与意义说明汽车之家网站舆情分析对汽车行业及消费者的重要性。1.2国内外研究现状概述国内外在汽车舆情分析领域的研究进展与成果。1.3论文方法及创新点介绍本文采用的研究方法及相较于前人的创新之处。第2章相关理论总结和评述舆情分析、Python编程及网络爬虫相关理论。2.1舆情分析理论阐述舆情分析的基本概念、流程及关键技术。2.2Python编程基础介绍Python语言特点及其在数据分析中的应用。2.3网络爬虫技术说明网络爬虫的原理及在舆情数据收集中的应用。第3章系统设计详细描述基于Python的汽车之家网站舆情分析系统的设计方案。3.1系统架构设计给出系统的整体架构,包括数据收集、处理、分析及展示模块。3.2数据收集模块设计介绍如何利用网络爬虫技术收集汽车之家网站的舆情数据。3.3数据处理与分析模块设计阐述数据处理流程及舆情分析算法的选择与实现。第4章系统实现与测试介绍系统的实现过程及测试方法,确保系统稳定可靠。4.1系统实现环境列出系统实现所需的软件、硬件环境及开发工具。4.2系统实现过程详细描述系统各模块的实现步骤及代码实现细节。4.3系统测试方法介绍系统测试的方法、测试用例及测试结果分析。第5章研究结果与分析呈现系统运行结果,分析舆情数据,提出见解。5.1舆情数据可视化展示通过图表等形式展示舆情数据的分布、趋势等特征。5.2舆情分析结果解读对舆情分析结果进行解读,提出对汽车行业的见解。5.3对比方法分析将本系统与其他舆情分析系统进行对比,分析优劣。第6章结论与展望总结研究成果,提出未来研究方向。6.1研究结论概括本文的主要研究成果及对汽车之家网站舆情分析的贡献。6.2展望指出系统存在的不足及未来改进方向,展望舆情
【磁场】扩展卡尔曼滤波器用于利用高斯过程回归进行磁场SLAM研究(Matlab代码实现)内容概要:本文介绍了利用扩展卡尔曼滤波器(EKF)结合高斯过程回归(GPR)进行磁场辅助的SLAM(同步定位与地图构建)研究,并提供了完整的Matlab代码实现。该方法通过高斯过程回归对磁场空间进行建模,有效捕捉磁场分布的非线性特征,同时利用扩展卡尔曼滤波器融合传感器数据,实现移动机器人在复杂环境中的精确定位与地图构建。研究重点在于提升室内等无GPS环境下定位系统的精度与鲁棒性,尤其适用于磁场特征明显的场景。文中详细阐述了算法原理、数学模型构建、状态估计流程及仿真实验设计。; 适合人群:具备一定Matlab编程基础,熟悉机器人感知、导航或状态估计相关理论的研究生、科研人员及从事SLAM算法开发的工程师。; 使用场景及目标:①应用于室内机器人、AGV等在缺乏GPS信号环境下的高精度定位与地图构建;②为磁场SLAM系统的设计与优化提供算法参考和技术验证平台;③帮助研究人员深入理解EKF与GPR在非线性系统中的融合机制及实际应用方法。; 阅读建议:建议读者结合Matlab代码逐模块分析算法实现细节,重点关注高斯过程回归的训练与预测过程以及EKF的状态更新逻辑,可通过替换实际磁场数据进行实验验证,进一步拓展至多源传感器融合场景。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值