hdu多校第七场 6656 Kejin Player (期望dp)

本文探讨了一款游戏中的升级策略,玩家在不同等级时,通过支付一定费用并以特定概率升级或降级,分析了从等级L升级到等级R的期望花费,提供了解决方案及代码实现。

Kejin Player

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 1830    Accepted Submission(s): 745


 

Problem Description

Cuber QQ always envies those Kejin players, who pay a lot of RMB to get a higher level in the game. So he worked so hard that you are now the game designer of this game. He decided to annoy these Kejin players a little bit, and give them the lesson that RMB does not always work.

This game follows a traditional Kejin rule of "when you are level i, you have to pay ai RMB to get to level i+1". Cuber QQ now changed it a little bit: "when you are level i, you pay ai RMB, are you get to level i+1 with probability pi; otherwise you will turn into level xi (xi≤i)".

Cuber QQ still needs to know how much money expected the Kejin players needs to ``ke'' so that they can upgrade from level l to level r, because you worry if this is too high, these players might just quit and never return again.

 

 

Input

The first line of the input is an integer t, denoting the number of test cases.

For each test case, there is two space-separated integers n (1≤n≤500 000) and q (1≤q≤500 000) in the first line, meaning the total number of levels and the number of queries.

Then follows n lines, each containing integers ri, si, xi, ai (1≤ri≤si≤109, 1≤xi≤i, 0≤ai≤109), space separated. Note that pi is given in the form of a fraction risi.

The next q lines are q queries. Each of these queries are two space-separated integers l and r (1≤l<r≤n+1).

The sum of n and sum of q from all t test cases both does not exceed 106.

 

 

Output

For each query, output answer in the fraction form modulo 109+7, that is, if the answer is PQ, you should output P⋅Q−1 modulo 109+7, where Q−1 denotes the multiplicative inverse of Q modulo 109+7.

 

 

Sample Input

 

1 3 2 1 1 1 2 1 2 1 3 1 3 3 4 1 4 3 4

 

 

Sample Output

 

22 12

Hint

Huge IO (Over 40MB)! IO optimization is preferred.

 

 

Source

2019 Multi-University Training Contest 7

 

题意:

一个人在i等级可以花费ai来获得pi的概率升到i+1等级,也有(1-pi)的概率掉到xi等级,给了Q次查询,问L到R等级的期望花费。

 

思路:

设dp[i]表示到N+1等级还需要多少花费。

递推式子很显然的推出来。

dp_i = p_i * dp_{i+1} + (1-p_i) * dp_{xi} + a_i

但是对于这个式子,我们不好处理dp_{xi}

又因为发现x_{i}<=i,可以发现当i为1的时候,xi肯定是1。

所以我们可以容易的得到dp[1]和dp[2]的转移方程。

dp_1 = dp_2 + \frac{a_1}{p_1}

而对于i>1的来说,dp_i = p_i * dp_{i+1} + (1-p_i) * dp_{xi} + a_i

这个式子中的dp[xi]是可以从前面顺序递推中得到关系的,我们可以按照顺序慢慢地得到dp_idp_{i+1}的关系。然后用迭代,可以将dp_{xi}转化成关于dp_{i}的式子,然后带进去计算可以得到:

dp_{i} = dp_{i+1} + \frac{(1-p_i)*(sum[i+1]-sum[i])+a_i}{p_i}

然后我们递推维护sum数组就行了。

 

代码:

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
const int maxn=5e5+5;
const int mod=1e9+7;
ll sum[maxn];
ll r[maxn],s[maxn],x[maxn],a[maxn];
ll dp[maxn];
ll quickmod(ll a,ll b)
{
    ll ans=1;
    while(b)
    {
        if(b%2==1)
            ans=ans*a%mod;
        b=b/2;
        a=a*a%mod;
    }
    return ans;
}
int main()
{
    int t,n,q,L,R;
    scanf("%d",&t);
    while(t--)
    {
        memset(sum,0,sizeof(sum));
        scanf("%d%d",&n,&q);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d%d",&r[i],&s[i],&x[i],&a[i]);
            if(i==1)
            {
                ll p=(r[i]*quickmod(s[i],mod-2))%mod;
                sum[i+1]=(a[i]*quickmod(p,mod-2))%mod;
            }
            else
            {
                ll p=(r[i]*quickmod(s[i],mod-2))%mod;
                ll tmp=((1-p+mod)%mod*(sum[i]-sum[x[i]]+mod)%mod+a[i])*quickmod(p,mod-2)%mod;
                sum[i+1]=(sum[i]+tmp+mod)%mod;
            }
        }
        dp[n+1]=0;
        for(int i=n;i>=1;i--)
            dp[i]=(dp[i+1]+(sum[i+1]-sum[i])+mod)%mod;
        for(int i=1;i<=q;i++)
        {
            scanf("%d%d",&L,&R);
            printf("%lld\n",(dp[L]-dp[R]+mod)%mod);
        }
    }
    return 0;
}

 

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值