PAT 1013 Battle Over Cities [图的遍历] [连通块的个数] [DFS]

本文探讨了在战争背景下,确保城市间高速公路网络连通性的算法。通过删除特定城市的连接,算法快速计算需要修复的高速公路数量,以维持其余城市间的连通。示例输入输出展示了算法的有效性。

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city​1​​-city​2​​ and city​1​​-city​3​​. Then if city​1​​ is occupied by the enemy, we must have 1 highway repaired, that is the highway city​2​​-city​3​​.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output Specification:

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input:

3 2 3
1 2
1 3
1 2 3

Sample Output:

1
0
0

 -------------------------------------这是题目和解题的分割线 -------------------------------------

求删除顶点后需要增加几条边,才能使图变为连通的。 也就是删除顶点后,连通块-1。(当然这不是我想出来的是书上的= = 

#include<cstdio>
#include<cstring>

using namespace std;

#define maxN 1010

int n,m,k,nowCut;
int G[maxN][maxN] = {},vis[maxN] = {};

//连通块的遍历 
void dfs(int index)
{
	if(index==nowCut) return; //碰到要删除的点,return 
	vis[index] = 1; //访问 
	for(int i=1;i<=n;i++)
	{
		if(G[index][i]&&!vis[i])
			dfs(i);
	}
}

//图的遍历 
int DFSTravel()
{
	int i,cnt = 0;
	//from 1 to N 
	for(i=1;i<=n;i++)
	{
		//如果没访问过该点,且不是要删除的点 
		if(!vis[i]&&i!=nowCut)
		{
			dfs(i); //遍历该连通块 
			cnt++; //连通块+1 
		}	
	}
	return cnt;
}

int main()
{
	int i,a,b;
	scanf("%d%d%d",&n,&m,&k);
	for(i=0;i<m;i++)
	{
		scanf("%d%d",&a,&b);
		G[a][b] = 1;
		G[b][a] = 1;
	}
	int qy;
	for(i=0;i<k;i++)
	{
		memset(vis,0,sizeof(vis)); //清除上一次的访问痕迹 
		scanf("%d",&qy);
		nowCut = qy; //全局变量nowCut记录当前删除的顶点 
		int out = DFSTravel();
		printf("%d\n",out-1); //连通块-1 
	}
	return 0;
}

 

下载前必看:https://renmaiwang.cn/s/bvbfw Verilog设计_串并转换 / 移位寄存器实现了一种串并转换的功能,其核心原理在于移位寄存器的运用。 这里详细展示了串转并以及并转串两种不同的设计方案。 每一种转换模式都设有专属的使能信号,同时并行输出数据的格式提供了两种选择:最低有效位优先(lsb)和最高有效位优先(msb)。 串并转换技术主要应用于串行传输与并行传输这两种数据传输模式之间的相互转换,而移位寄存器是达成这一目标的常用工具,能够支持并行及串行的数据输入与输出操作。 这些移位寄存器通常被设定为“串行输入、并行输出”(SIPO)或“并行输入、串行输出”(PISO)两种工作模式。 在串行数据输出的过程中,构成数据和字符的码元会按照既定的时间顺序逐位进行传输。 相比之下,并行数据传输则是在同一时刻将固定数量(普遍为8位或16位等)的数据和字符码元同时发送至接收端。 数据输入通常采用串行格式进行。 一旦数据成功输入寄存器,它便可以在所有输出端同时被读取,或者选择逐位移出。 寄存器中的每个触发器均设计为边沿触发类型,并且所有触发器均以特定的时钟频率协同工作。 对于每一个输入位而言,它需要经过N个时钟周期才能最终在N个输出端呈现,从而完成并行输出。 值得注意的是,在串行加载数据期间,并行输出端的数据状态应保持稳定。 数据输入则采用并行格式。 在将数据写入寄存器的操作过程中,写/移位控制线必须暂时处于非工作状态;而一旦需要执行移位操作,控制线便会变为激活状态,并且寄存器会被锁定以保持当前状态。 只要时钟周期数不超过输入数据串的长度,数据输出端Q将按照预定的顺序逐位读出并行数据,并且必须明确区分最低有效位(LSB)和最高有效位(MSB)。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值