[LeetCode]Kth Smallest Element in a BST

本文介绍了两种解决二叉搜索树中寻找第K小元素问题的方法,采用二分搜索和中序遍历。通过辅助方法计算左子树节点数量,优化了查找过程。同时,通过迭代中序遍历使用栈结构实现,巧妙地解决了树的遍历问题,适合算法爱好者深入学习。

Kth Smallest Element in a BST : **

这个题目,俩种方法都不错。都是练习了我的盲点。

//Method 1 Binary Search
//helper用到了返回一棵树的node 数的小方法
//主题核心思想是binary search,非常类似于用quick sort 找kth element in unsorted array 那个题目。 个人很喜欢这俩道题。 
public class Solution {
    public int kthSmallest(TreeNode root, int k) {
        int n = helper(root.left);
        if( n == k-1){
            return root.val;
        }else if( n >= k){
            return kthSmallest(root.left,k);
        }else{
            return kthSmallest(root.right,k-n-1);
        }
    }

    public int helper(TreeNode node){
        if(node == null){
            return 0;
        }
        return helper(node.left) + helper(node.right)  + 1;
    }
}
//Method 2 Iterate over a BT in-order using stack
//这个方法第一学期算法课上写过sudo code。。。时隔大半年了,第一次实现。。
//有个tricky的地方,一开始先加一个 root进去,注意这里root加了俩遍。这样在root 所有left边node处理完之后,stack不会empty,
//才能继续处理右边,要不然直接结束循环就不对了。这只是一种方法,回头遇到更好的实现再来update
    public int kthSmallest(TreeNode root, int k) {

        LinkedList
  
    stack = new LinkedList
   
    ();
        TreeNode node = root;
        stack.push(root);
        int count = 0;
        while(!stack.isEmpty()){
            while(node != null){
                stack.push(node);
                node = node.left;
            }
            TreeNode top = stack.pop();
            count ++;
            if(count == k){
                return top.val;
            }
            node = top.right;
         }
         return 0;

        }
   
  



下载前可以先看下教程 https://pan.quark.cn/s/a426667488ae 标题“仿淘宝jquery图片左右切换带数字”揭示了这是一个关于运用jQuery技术完成的图片轮播机制,其特色在于具备淘宝在线平台普遍存在的图片切换表现,并且在整个切换环节中会展示当前图片的序列号。 此类功能一般应用于电子商务平台的产品呈现环节,使用户可以便捷地查看多张商品的照片。 说明中的“NULL”表示未提供进一步的信息,但我们可以借助标题来揣摩若干核心的技术要点。 在构建此类功能时,开发者通常会借助以下技术手段:1. **jQuery库**:jQuery是一个应用广泛的JavaScript框架,它简化了HTML文档的遍历、事件管理、动画效果以及Ajax通信。 在此项目中,jQuery将负责处理用户的点击动作(实现左右切换),并且制造流畅的过渡效果。 2. **图片轮播扩展工具**:开发者或许会采用现成的jQuery扩展,例如Slick、Bootstrap Carousel或个性化的轮播函数,以达成图片切换的功能。 这些扩展能够辅助迅速构建功能完善的轮播模块。 3. **即时数字呈现**:展示当前图片的序列号,这需要通过JavaScript或jQuery来追踪并调整。 每当图片切换时,相应的数字也会同步更新。 4. **CSS美化**:为了达成淘宝图片切换的视觉效果,可能需要设计特定的CSS样式,涵盖图片的排列方式、过渡效果、点状指示器等。 CSS3的动画和过渡特性(如`transition`和`animation`)在此过程中扮演关键角色。 5. **事件监测**:运用jQuery的`.on()`方法来监测用户的操作,比如点击左右控制按钮或自动按时间间隔切换。 根据用户的交互,触发相应的函数来执行...
垃圾实例分割数据集 一、基础信息 • 数据集名称:垃圾实例分割数据集 • 图片数量: 训练集:7,000张图片 验证集:426张图片 测试集:644张图片 • 训练集:7,000张图片 • 验证集:426张图片 • 测试集:644张图片 • 分类类别: 垃圾(Sampah) • 垃圾(Sampah) • 标注格式:YOLO格式,包含实例分割的多边形点坐标,适用于实例分割任务。 • 数据格式:图片文件 二、适用场景 • 智能垃圾检测系统开发:数据集支持实例分割任务,帮助构建能够自动识别和分割图像中垃圾区域的AI模型,适用于智能清洁机器人、自动垃圾桶等应用。 • 环境监控与管理:集成到监控系统中,用于实时检测公共区域的垃圾堆积,辅助环境清洁和治理决策。 • 计算机视觉研究:支持实例分割算法的研究和优化,特别是在垃圾识别领域,促进AI在环保方面的创新。 • 教育与实践:可用于高校或培训机构的AI课程,作为实例分割技术的实践数据集,帮助学生理解计算机视觉应用。 三、数据集优势 • 精确的实例分割标注:每个垃圾实例都使用详细的多边形点进行标注,确保分割边界准确,提升模型训练效果。 • 数据多样性:包含多种垃圾物品实例,覆盖不同场景,增强模型的泛化能力和鲁棒性。 • 格式兼容性强:YOLO标注格式易于与主流深度学习框架集成,如YOLO系列、PyTorch等,方便研究人员和开发者使用。 • 实际应用价值:直接针对现实世界的垃圾管理需求,为自动化环保解决方案提供可靠数据支持,具有重要的社会意义。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值