Spark任务调度策略
FIFO
FIFO(先进先出)方式调度Job,每个Job被切分成多个Stage。第一个Job优先获取所有可用资源,接下来第二个Job再获取剩余可用资源。(每个Stage对应一个TaskSetManager)
优先级(Priority): 在DAGscheduler创建TaskSet时使用JobId作为优先级的值。FIFO调度算法实现如下所示
private[spark] class FIFOSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val priority1 = s1.priority
val priority2 = s2.priority
var res = math.signum(priority1 - priority2)
if (res == 0) {
val stageId1 = s1.stageId
val stageId2 = s2.stageId
res = math.signum(stageId1 - stageId2)
}
if (res < 0) {
true
} else {
false
}
}
}
由源码可知,FIFO依据JobId进行挑选较小值。因为越早提交的作业,JobId越小。
对同一个作业(Job)而言,越早生成的Stage,其StageId越小。有依赖关系的多个Stage之间,DAGScheduler会控制Stage是否会被提交到调度队列中(若其依赖的Stage未执行完前,此Stage不会被提交),其调度顺序可通过此来保证。但若某Job中有两个无入度的Stage的话,则先调度StageId小的Stage
FAIR
FAIR共享模式调度下,Spark以在多Job之间轮询方式为任务分配资源,所有的任务拥有大致相当的优先级来共享集群的资源。FAIR调度模型如下图:
Fair调度队列可存在多个调度队列,且队列呈树型结构,用户使用sc.setLocalProperty(“spark.scheduler.pool”, “poolName”)来指定要加入的队列,默认情况下会加入到buildDefaultPool。每个队列中还可指定自己内部的调度策略,且Fair还存在一些特殊的属性:
- schedulingMode: 设置调度池的调度模式FIFO或FAIR, 默认为FIFO
- minShare:最少资源保证量,当一个队列最少资源未满足时,它将优先于其它同级队列获取资源
- weight: 在一个队列内部分配资源时,默认情况下,采用公平轮询的方法将资源分配给各个应用程序,而该参数则将打破这种平衡。例如,如果用户配置一个指定调度池权重为2, 那么这个调度池将会获得相对于权重为1的调度池2倍的资源
以上参数,可通过conf/fairscheduler.xml文件配置调度池的属性。Fair调度算法实现:
private[spark] class FairSchedulingAlgorithm extends SchedulingAlgorithm {
override def comparator(s1: Schedulable, s2: Schedulable): Boolean = {
val minShare1 = s1.minShare
val minShare2 = s2.minShare
val runningTasks1 = s1.runningTasks
val runningTasks2 = s2.runningTasks
val s1Needy = runningTasks1 < minShare1
val s2Needy = runningTasks2 < minShare2
val minShareRatio1 = runningTasks1.toDouble / math.max(minShare1, 1.0).toDouble
val minShareRatio2 = runningTasks2.toDouble / math.max(minShare2, 1.0).toDouble
val taskToWeightRatio1 = runningTasks1.toDouble / s1.weight.toDouble
val taskToWeightRatio2 = runningTasks2.toDouble / s2.weight.toDouble
var compare: Int = 0
if (s1Needy && !s2Needy) {
return true
} else if (!s1Needy && s2Needy<