301. 任务安排2(算法竞赛进阶指南,斜率优化 DP)

本文深入探讨了一种特殊的动态规划算法——斜率优化DP,通过一个具体的问题实例,详细展示了算法的实现过程。从代码层面,我们不仅可以看到斜率优化DP如何减少计算复杂度,还能理解其背后的数学原理。

一.题目链接:

任务安排 2

二.题目大意:

中文题~~

三.分析(划水):

嘤嘤嘤,第一道斜率优化 DP.

网上讲解很多了,大佬讲得也很棒,我就不造轮子了.

四.代码实现:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;

const int M = (int)3e5;
const int inf = 0x3f3f3f3f;

ll sumt[M + 5];
ll sumc[M + 5];
ll q[M + 5];
ll f[M + 5];

int main()
{
    int n, s;
    scanf("%d %d", &n, &s);
    for(int i = 1; i <= n; ++i)
    {
        scanf("%lld %lld", &sumt[i], &sumc[i]);
        sumt[i] += sumt[i - 1];
        sumc[i] += sumc[i - 1];
    }
    int l = 1, r = 0;
    q[++r] = 0;
    for(int i = 1; i <= n; ++i)
    {
        while(l < r && (f[q[l + 1]] - f[q[l]]) <= (s + sumt[i]) * (sumc[q[l + 1]] - sumc[q[l]]))    ++l;
        if(l <= r)   f[i] = f[q[l]] + sumt[i] * (sumc[i] - sumc[q[l]]) + s * (sumc[n] - sumc[q[l]]);
        while(l < r && (f[i] - f[q[r]]) * (sumc[q[r]] - sumc[q[r - 1]]) <= (f[q[r]] - f[q[r - 1]]) * (sumc[i] - sumc[q[r]]))    --r;
        q[++r] = i;
    }
    printf("%lld\n", f[n]);
    return 0;
}

 

【顶刊TAC复现】事件触发模型参考自适应控制(ETC+MRAC):针对非线性参数不确定性线性部分时变连续系统研究(Matlab代码实现)内容概要:本文档介绍了“事件触发模型参考自适应控制(ETC+MRAC)”的研究与Matlab代码实现,聚焦于存在非线性参数不确定性且具有时变线性部分的连续系统。该研究复现了顶刊IEEE Transactions on Automatic Control(TAC)的相关成果,重点在于通过事件触发机制减少控制器更新频率,提升系统资源利用效率,同时结合模型参考自适应控制策略增强系统对参数不确定性和外部扰动的鲁棒性。文档还展示了大量相关科研方向的技术服务内容,涵盖智能优化算法、机器学习、路径规划、电力系统、信号处理等多个领域,并提供了Matlab仿真辅导服务及相关资源下载链接。; 适合人群:具备自动控制理论基础、非线性系统分析背景以及Matlab编程能力的研究生、博士生及科研人员,尤其适合从事控制理论与工程应用研究的专业人士。; 使用场景及目标:① 复现顶刊TAC关于ETC+MRAC的先进控制方法,用于非线性时变系统的稳定性与性能优化研究;② 学习事件触发机制在节约通信与计算资源方面的优势;③ 掌握模型参考自适应控制的设计思路及其在不确定系统中的应用;④ 借助提供的丰富案例与代码资源开展科研项目、论文撰写或算法验证。; 阅读建议:建议读者结合控制理论基础知识,重点理解事件触发条件的设计原理与自适应律的构建过程,运行并调试所提供的Matlab代码以加深对算法实现细节的理解,同时可参考文中列举的其他研究方向拓展应用场景。
<think>好的,用户想了解斜率优化动态规划的概念及实现方法。首先,我需要回忆一下动态规划的基础知识,特别是优化方法。动态规划通常有递推和记忆化搜索两种实现方式,而斜率优化属于一种高级的优化技巧,用于降低时间复杂度。 用户提到的参考引用中提到,递推的效率比记忆化搜索高,并且很多优化技巧如滚动数组、单调队列、斜率优化都建立在递推上。所以,斜率优化应该属于递推方法的一种扩展。 接下来,我需要明确斜率优化的核心思想。根据已有的知识,斜率优化通常用于处理状态转移方程中的决策变量,通过分析转移方程的数学形式,将其转化为斜率问题,从而利用单调队列或凸包等数据结构来优化决策过程。 例如,当状态转移方程形如$dp[i] = \min\{dp[j] + f(i,j)\}$,其中$f(i,j)$可以分解为与i和j相关的项,可能可以将其转换为斜率的形式。比如,若$f(i,j)=a[i]*b[j]+c[i]+d[j]$,可能将式子整理为关于$b[j]$和$dp[j]+d[j]$的线性表达式,进而比较不同j值的斜率,选择最优的决策点。 需要解释为什么这种方法有效,可能涉及到维护一个下凸包或上凸包,确保每次决策时选取的j是最优的,从而将时间复杂度从O(n^2)降低到O(n)或O(n log n)。 然后,结合用户提供的引用内容,特别是引用[2]提到的QP优化DP结合,可能斜率优化在路径规划中的应用,但用户的问题更关注动态规划中的斜率优化,所以需要专注于算法实现的步骤。 需要给出具体的例子,比如任务安排问题,或者最大子序列问题,来展示斜率优化的应用步骤。例如,经典的任务安排问题,其中状态转移方程可以斜率优化,通过维护一个单调队列来快速找到最优的前驱状态。 在实现步骤方面,应该分步骤解释:问题分析、状态转移方程整理为斜率形式、数据结构的选择(如单调队列)、维护凸包的过程、以及最终的时间复杂度分析。 同时,要注意数学表达式的正确格式,使用$$...$$和$...$,并确保LaTeX语法正确。例如,将状态转移方程写成$$dp[i] = \min_{j<i}\{ dp[j] + (S + T_i)(C_i - C_j) \}$$,然后展开分析。 另外,用户提供的引用中有提到变积分PID和QP优化,虽然这些可能与斜率优化无直接关联,但需要确保不混淆概念,专注于动态规划中的斜率优化部分。 最后,生成相关问题时要围绕斜率优化的应用场景、与其他优化方法的比较、具体实现中的挑战等,帮助用户深入理解。</think>### 斜率优化动态规划详解 #### 概念解析 斜率优化动态规划(Slope Optimization DP)是一种通过**分析状态转移方程的斜率特性**来优化决策过程的方法,可将部分动态规划问题的时间复杂度从$O(n^2)$降至$O(n)$或$O(n \log n)$[^1]。其核心是将状态转移方程转换为**线性关系式**,通过维护**决策点集的凸包**快速筛选最优决策。 #### 算法原理 1. **状态转移方程重构** 设状态转移方程为: $$dp[i] = \min_{j<i}\{ dp[j] + f(i,j) \}$$ 若$f(i,j)$可分解为$A(i) \cdot B(j) + C(i) + D(j)$形式,则方程可改写为: $$dp[i] = C(i) + \min_{j<i}\{ A(i) \cdot B(j) + (dp[j] + D(j)) \}$$ 此时决策变量$j$的优劣可转化为**点$(B(j), dp[j]+D(j))$的斜率比较**。 2. **凸包维护** 通过维护决策点集的**下凸包**(当$A(i)$单调递增)或**上凸包**(当$A(i)$单调递减),使用单调队列/栈快速剔除无效决策点。 #### 实现步骤(以经典任务安排问题为例) **问题描述** 处理$n$个任务,每个任务耗时$t_i$,费用系数$c_i$。目标最小化总费用: $$总费用 = \sum_{i=1}^n (\text{完成时间} \times c_i)$$ **状态转移方程** $$dp[i] = \min_{j<i}\left\{ dp[j] + (S + T_i)(C_i - C_j) \right\}$$ 其中$T_i = \sum_{k=1}^i t_k$, $C_i = \sum_{k=1}^i c_k$,$S$为启动延迟。 **斜率优化过程** 1. **方程变形** 将方程展开为: $$dp[i] = S \cdot C_i + T_i \cdot C_i + \min_{j<i}\{ dp[j] - S \cdot C_j - T_i \cdot C_j \}$$ 令: $$ \begin{cases} k = T_i \\ x_j = C_j \\ y_j = dp[j] - S \cdot C_j \\ \end{cases} $$ 则状态转移简化为: $$dp[i] = (S + T_i)C_i + \min_{j<i}\{ y_j - k x_j \}$$ 2. **决策点筛选** 最优决策点需满足: $$\frac{y_j - y_k}{x_j - x_k} \leq k_i \quad (\text{下凸包条件})$$ 使用单调队列维护凸包,队首即为当前最优决策。 **Python实现示例** ```python def slope_optimization_dp(n, S, t, c): T = [0]*(n+1) # 前缀时间和 C = [0]*(n+1) # 前缀费用和 dp = [0]*(n+1) q = deque([0]) # 单调队列存储决策点索引 for i in range(1, n+1): T[i] = T[i-1] + t[i-1] C[i] = C[i-1] + c[i-1] # 剔除队首非最优决策 while len(q)>=2 and (dp[q[1]] - dp[q[0]]) <= (S + T[i])*(C[q[1]] - C[q[0]]): q.popleft() j = q[0] dp[i] = dp[j] + (S + T[i] - T[j])*(C[i] - C[j]) # 维护下凸包 while len(q)>=2 and (dp[i]-dp[q[-1]])*(C[q[-1]]-C[q[-2]]) <= (dp[q[-1]]-dp[q[-2]])*(C[i]-C[q[-1]]): q.pop() q.append(i) return dp[n] ``` #### 关键优化点 - **时间复杂度**:从$O(n^2)$优化至$O(n)$ - **数据结构**:单调队列实现$O(1)$时间复杂度的决策筛选 - **适用条件**:状态转移方程需满足**决策单调性**且参数满足**斜率单调性** #### 典型应用场景 1. 任务调度问题 2. 最优库存控制 3. 资源分配优化 4. 路径规划中的轨迹平滑(如自动驾驶中的QP优化前处理[^2])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值