R语言 元正态分布参数的最大似然估计

90 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用R语言进行元正态分布参数的最大似然估计。首先,阐述了元正态分布的概念及其概率密度函数,然后详细讲解了如何定义对数似然函数,并提供了R代码示例,包括数据准备、初始参数设置以及最大似然估计的实现过程,以帮助读者理解和应用这一方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言 元正态分布参数的最大似然估计

最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的参数估计方法,可以用于估计元正态分布(Elliptical Normal Distribution)的参数。元正态分布是多变量正态分布的一种扩展,广泛应用于统计建模和数据分析中。本文将详细介绍如何使用R语言进行元正态分布参数的最大似然估计,并提供相应的源代码示例。

首先,让我们了解一下元正态分布的定义和参数。元正态分布是指具有椭球形轮廓的多变量正态分布。它的概率密度函数(Probability Density Function,简称PDF)可以表示为:

f(x; μ, Σ, ν) = c(ν, Σ)^(-1/2) * [1 + (x - μ)'Σ^(-1)(x - μ)/ν]^(-(ν+p)/2)

其中,x是一个p维向量,μ是p维均值向量,Σ是p×p维协方差矩阵,ν是自由度参数,c(ν, Σ)是一个与ν和Σ相关的归一化常数。

接下来,我们将使用R语言中的mle()函数实现元正态分布参数的最大似然估计。首先,我们需要定义元正态分布的对数似然函数。对数似然函数可以简化计算并避免数值溢出。对于元正态分布,对数似然函数可以表示为:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值