【bzoj 4391】 High Card Low Card 【Usaco2015 dec】

本文介绍了一种算法,帮助Bessie在一种特殊的卡牌游戏中制定最优策略,以最大化她的胜局数。通过预测对手的行为并合理选择游戏规则,Bessie能够确定最佳的出牌顺序。

Description

Bessie the cow is a huge fan of card games, which is quite surprising, given her lack of opposable thumbs. Unfortunately, none of the other cows in the herd are good opponents. They are so bad, in fact, that they always play in a completely predictable fashion! Nonetheless, it can still be a challenge for Bessie to figure out how to win.

Bessie and her friend Elsie are currently playing a simple card game where they take a deck of 2N cards, conveniently numbered 1…2N, and divide them into N cards for Bessie and N cards for Elsie. The two then play NN rounds, where in each round Bessie and Elsie both play a single card. Initially, the player who plays the highest card earns a point. However, at one point during the game, Bessie can decide to switch the rules so that for the rest of the game, the player who plays the lowest card wins a point. Bessie can choose not to use this option, leaving the entire game in "high card wins" mode, or she can even invoke the option right away, making the entire game follow the "low card wins" rule.

Given that Bessie can predict the order in which Elsie will play her cards, please determine the maximum number of points Bessie can win.

 

奶牛Bessie和Elsie在玩一种卡牌游戏。一共有2N张卡牌,点数分别为1到2N,每头牛都会分到N张卡牌。

游戏一共分为N轮,因为Bessie太聪明了,她甚至可以预测出每回合Elsie会出什么牌。

每轮游戏里,两头牛分别出一张牌,点数大者获胜。

同时,Bessie有一次机会选择了某个时间点,从那个时候开始,每回合点数少者获胜。

Bessie现在想知道,自己最多能获胜多少轮?

 

Input

The first line of input contains the value of N (2≤N≤50,000).

The next N lines contain the cards that Elsie will play in each of the successive rounds of the game. Note that it is easy to determine Bessie's cards from this information.

Output

Output a single line giving the maximum number of points Bessie can score.

Sample Input

4
1
8
4
3

Sample Output

3

HINT

 

Here, Bessie must have cards 2, 5, and 6, and 7 in her hand, and she can use these to win at most 3 points. For example, she can defeat the 1 card and then switch the rules to "low card wins", after which she can win two more rounds.

对于这道题,首先考虑不改变规则的做法,设f[i]表示出到第i张牌时的最多获胜,用set维护可以出的牌,每次使用比需要大的最小的牌,然后这题就可以先正反分别跑一遍,枚举断点即可,下面是程序:

#include<stdio.h>
#include<set>
#include<iostream>
using namespace std;
const int N=50005;
set<int>a,b;
int f[2][N],x[N];
bool t[N<<1];
int main(){
	int n,i,ans=0;
	set<int>::iterator tp;
	scanf("%d",&n);
	for(i=1;i<=n;i++){
		scanf("%d",&x[i]);
		t[x[i]]=1;
	}
	for(i=1;i<=(n<<1);i++){
		if(!t[i]){
			a.insert(i);
			b.insert(-i);
		}
	}
	for(i=1;i<=n;i++){
		tp=a.lower_bound(x[i]);
		if(tp!=a.end()){
			a.erase(tp);
			f[0][i]=f[0][i-1]+1;
		}
		else{
			f[0][i]=f[0][i-1];
		}
	}
	for(i=n;i>=1;i--){
		tp=b.lower_bound(-x[i]);
		if(tp!=b.end()){
			b.erase(tp);
			f[1][i]=f[1][i+1]+1;
		}
		else{
			f[1][i]=f[1][i+1];
		}
	}
	for(i=0;i<=n;i++){
		ans=max(ans,f[0][i]+f[1][i+1]);
	}
	printf("%d\n",ans);
	return 0;
}

 

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值