R notes (2) : predict.lm function

predict.lm 函数用于基于线性模型对象生成预测值。它根据新的数据帧newdata(默认为model.frame(object))评估回归函数。如果se.fit为TRUE,将计算预测的标准误差。如果提供了scale参数(带有可选的df),则将其用作计算标准误差的残差标准偏差,否则从模型拟合中提取。此外,可以通过设置intervals来计算指定水平的置信或预测区间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Reference

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/predict.lm

Predict method for Linear Model Fits

Predicted values based on linear model object.

Usage

# S3 method for lm
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,
        interval = c("none", "confidence", "prediction"),
        level = 0.95, type = c("response", "terms"),
        terms = NULL, na.action = na.pass,
        pred.var = res.var/weights, weights = 1,)

Arguments

Arguments Instrument
object Object of class inheriting from “lm”
newdata An optional data frame in which to look for variables with which to predict. If omitted, the fitted values are used.
se.fit A switch indicating if standard errors are required.
scale Scale parameter for std.err. calculation.
df Degrees of freedom for scale.
interval Type of interval calculation. Can be abbreviated.
level Tolerance/confidence level.
type Type of prediction (response or model term). Can be abbreviated.
terms If type = “terms”, which terms (default is all terms), a character vector.
na.action function determining what should be done with missing values in newdata. The default is to predict NA.
pred.var the variance(s) for future observations to be assumed for prediction intervals. See ‘Details’.
weights variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata.

Details

predict.lm produces predicted values, obtained by evaluating the regression function in the frame newdata (which defaults to model.frame(object)). If the logical se.fit is TRUE, standard errors of the predictions are calculated. If the numeric argument scale is set (with optional df), it is used as the residual standard deviation in the computation of the standard errors, otherwise this is extracted from the model fit. Setting intervals specifies computation of confidence or prediction (tolerance) intervals at the specified level, sometimes referred to as narrow vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Prediction from such a fit only makes sense if newdata is contained in the same subspace as the original data. That cannot be checked accurately, so a warning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit are handled is determined by the na.action argument of that fit. If na.action = na.omit omitted cases will not appear in the predictions, whereas if na.action = na.exclude they will appear (in predictions, standard errors or interval limits), with value NA. See also napredict.

The prediction intervals are for a single observation at each case in newdata (or by default, the data used for the fit) with error variance(s) pred.var. This can be a multiple of res.var, the estimated value of σ2: the default is to assume that future observations have the same error variance as those used for fitting. If weights is supplied, the inverse of this is used as a scale factor. For a weighted fit, if the prediction is for the original data frame, weights defaults to the weights used for the model fit, with a warning since it might not be the intended result. If the fit was weighted and newdata is given, the default is to assume constant prediction variance, with a warning.

Example 1

data

在这里插入图片描述
在这里插入图片描述

Codes

> xy = read.table(file = 'C:/Users/DELL/Desktop/Data Mining/Lecture/sp2001A/data01A.dat', header = T)
> xy
      x1    x2    x3    x4    x5     y
1   1.29  0.40 -0.02  0.23  0.37  1.12
2  -0.54 -1.43  0.74 -0.27  0.45 -0.95
3   0.50 -0.85 -0.02 -0.39  1.55 -0.92
4   0.54 -1.39  1.29  1.03 -0.28 -3.14
5   0.34  0.24  0.65  1.95 
<think>好的,我需要分析用户提供的这些预测指标和性能数据。首先,用户提到了predict_bleu-4、predict_rouge-1、rouge-2、rouge-l,以及runtime和吞吐量相关的指标。我需要逐一解释每个指标的含义,并结合引用中的数据进行比较,看看不同模型的表现如何。 首先看BLEU-4,引用中的三个例子分别是8.5178、27.8、88.43。BLEU通常用于机器翻译评估,数值越高说明生成文本与参考文本的n-gram匹配越好。88.43非常高,可能模型在特定领域表现优异,而8.5可能说明模型效果较差,或者测试集难度大。需要结合具体任务判断。 然后是ROUGE指标,ROUGE-1和ROUGE-L衡量的是召回率,即参考文本中的信息被覆盖的程度。引用1的rouge-1是25,rouge-l是20,而引用3则高达92和89,差距很大。这可能反映了不同模型的质量,引用3的模型生成内容更贴近参考,可能经过更好的训练或微调。 接下来是性能数据,如predict_runtime和samples_per_second。引用1的runtime是约8分钟处理了约16个样本,而引用3用了约17分钟处理了1.006样本/秒,这可能意味着引用3处理了更多样本或模型更大。需要看具体配置,比如硬件和批处理大小。 另外,predict_steps_per_second在引用1是0.4,引用2是0.035,引用3是0.503。步骤数可能与模型复杂度有关,步骤越少可能处理越快,但数值低可能意味着模型较大或计算密集。 需要指出这些指标的对比,比如高BLEU可能伴随较低的吞吐量,说明准确性和效率之间的权衡。用户可能需要根据实际需求选择模型,比如实时应用更关注吞吐量,而准确性要求高的场景则看BLEU和ROUGE。 还要注意,不同任务的指标基准不同,比如对话生成和文本摘要的ROUGE值通常范围不同。建议用户对比同类任务的基准值,并考虑模型优化方向,如蒸馏、量化以提高速度,或调整训练数据提升生成质量。</think>以下是关于预测指标和性能数据的逐项分析,结合引用中的示例数据说明: ### 一、语言生成质量指标 1. **BLEU-4** 评估生成文本与参考文本的4-gram匹配度,范围$[0,100]$ - 引用[1] $8.5178$:生成质量较低,可能存在语法错误或语义偏差 - 引用[2] $27.8$:达到基础生成水平 - 引用[3] $88.43$:接近人类写作水平,说明模型在特定领域表现优异[^3] 2. **ROUGE系列** 衡量生成内容的召回率(覆盖参考文本关键信息的能力) - ROUGE-1(单字粒度) 引用[1] $25.0013$ vs 引用[3] $92.3142$:后者能准确捕捉核心词汇[^1][^3] - ROUGE-2(双字组合) 引用[1] $6.1675$ vs 引用[3] $85.4301$:后者在短语连贯性上表现突出 - ROUGE-L(最长公共子序列) 引用[1] $20.7462$ vs 引用[3] $89.0632$:后者语义连贯性更优[^1][^3] ### 二、系统性能指标 1. **predict_runtime** 总推理耗时: - 引用[1] 7分59秒 vs 引用[3] 17分7秒:后者可能处理更大数据量或使用更复杂模型[^1][^3] 2. **predict_samples_per_second** 每秒处理样本数: - 引用[1] $15.934$:适合实时场景 - 引用[3] $1.006$:可能受模型规模或硬件限制[^1][^3] 3. **predict_steps_per_second** 计算步骤吞吐量: - 引用[1] $0.4$ vs 引用[3] $0.503$:后者优化更好 - 引用[2] $0.035$:存在明显计算瓶颈[^2] ### 三、优化建议 1. 质量与性能平衡: - 高ROUGE-L + 低samples/s时(如引用[3]),可尝试模型蒸馏 - 低BLEU-4 + 高samples/s时(如引用[1]),建议增加训练数据量[^3] 2. 硬件利用率分析: 当steps/s ≤0.5时(如所有引用数据),建议检查是否启用GPU加速或存在I/O瓶颈[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值