数据结构实验课遇到的题目
要求用堆实现的优先级队列对Djkstra算法进行优化
如有错误还请指正
typedef struct graph
{
int vernum;
int vertex[MAX];
int edge[MAX][MAX];
}GRAPH;
typedef struct
{
int dst;
int i;
}NODE;
typedef struct heap
{
NODE vertex[MAX];
int n;
}HEAP;
int Dijkstra_heap(GRAPH G,HEAP &heap)
{
int n;
printf("\nSet a veretex as source:");
scanf("%d",&n);
for(int i=0;i<G.vernum;i++)
{
pre[i]=n;
flag[i]=0;
dst[i]=G.edge[n][i];
}
dst[n]=0;
flag[n]=1;
NODE node;
for(int i=0;i<G.vernum;i++)
{
node.dst=dst[i];
node.i=i;
Insert(heap,node);
}
while(heap.n>0)
{
NODE temp=DeleteMin(heap);
int v=temp.i;
int dis=temp.dst;
flag[v]=1;
for(int k=0;k<G.vernum;k++)
{
if(flag[k]==0&&G.edge[v][k]<inf)
{
if(dst[v]+G.edge[v][k]<dst[k])
{
dst[k]=dst[v]+G.edge[v][k];
pre[k]=v;
}
}
}
}
return n;
}
void Insert(HEAP &heap,NODE item)
{
int i;
if(heap.n<MAX-1)
{
i=heap.n+1;
while(i!=1&&item.dst<heap.vertex[i/2].dst)
{
heap.vertex[i]=heap.vertex[i/2];
i/=2;
}
heap.vertex[i]=item;
heap.n++;
}
}
NODE DeleteMin(HEAP &heap)
{
int parent=1,child=2;
NODE item,temp;
if(heap.n>0)
{
item=heap.vertex[1];
temp=heap.vertex[heap.n--];
while(child<=heap.n)
{
if((child<heap.n)&&(heap.vertex[child].dst>heap.vertex[child+1].dst))
child++;
if(temp.dst<=heap.vertex[child].dst) break;
heap.vertex[parent]=heap.vertex[child];
parent=child;
child*=2;
}
heap.vertex[parent]=temp;
return item;
}
}