示例1: 返回各时刻状态
import tensorflow as tf
import numpy as np
import keras
from keras.layers import ConvLSTM2D
lstm_input = np.random.random((4,6,30,30,3)).astype(np.float32)
lstm_input = tf.convert_to_tensor(lstm_input)
lstm_out1 = ConvLSTM2D(filters=1,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
input_shape=(6,30,30,3),return_sequences=True)(lstm_input)
lstm_out2 = ConvLSTM2D(filters=2,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
return_sequences=True)(lstm_out1)
lstm_out3 = ConvLSTM2D(filters=3,kernel_size=[5,5],strides=(1,1),padding='valid',activation='relu',
return_sequences=True)(lstm_out2)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
lstm_out1_,lstm_out2_,lstm_out3_ = sess.run([lstm_out1,lstm_out2,lstm_out3])
print(lstm_out1_.shape)
print(lstm_out2_.shape)
print(lstm_out3_.sh