HDU - 4786 ——Fibonacci Tree

探讨如何结合斐波那契数列与生成树概念,解决特定条件下的生成树问题,包括算法实现与特例处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem: 
  Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges? 
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )

Input

  The first line of the input contains an integer T, the number of test cases. 
  For each test case, the first line contains two integers N(1 <= N <= 10 5) and M(0 <= M <= 10 5). 
  Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).

Output

  For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.

Sample Input

2
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1

Sample Output

Case #1: Yes
Case #2: No

 

题意:给你n个点,m个关系,1 表示白边, 0表示黑边,为是否有 k条白边和随便几条黑边构成一颗树,并且k要为斐波那契数;

思路就是黑边不限定数量  但是限制的是白边的数量一定要是斐波那契数  ,并且只有1, 0两种边;

那是不是判断一个最多的白边构成的树,和一个最少白边构成的树,在这期间的白边数一定能构成树;

你想最大生成树也就是最多白边构成的树,那如果我现在减少一条边,是不是后有一个点空出来,那我现在重新构成树,但是现在我不把拿出来的白边算进去,是不是后构成新的树  而那个点会有别的边相连; 树可能不是同一棵树,但是题目树一定能构成树就对了;

 

你这是要特判一下  本来就不是树的情况;

 

ac码

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstring>
#include <string>
#include <queue>
#include <vector>
#include <map>

using namespace std;
typedef long long LL;



int fa[100005];
struct po
{
	int u ,v ,w;
}eg[100005];


int n,m;
int fb()  //预处理斐波那契数列
{
	a[0] = 1,a[1] = 2;
	for(int i = 2; ; i++)
	{
		a[i] = a[i - 1] + a[i - 2];
		if(a[i] > 100500)
		{
			return i;
			break;
		}
	}
}

bool cmp1(po x,po y)  
{

	return x.w < y.w;  //xiao到da
}

bool cmp2(po x,po y)
{
	return x.w > y.w;  //da到xiao
}

int find(int x)
{
	if(x!=fa[x])
		fa[x]=find(fa[x]);
	return fa[x];
}

int bpf()    //避圈法
{
	int tot = n;
	int sum = 0;
	for(int i = 0;i < m;i++)
	{
		int x = find(eg[i].u);
		int y = find(eg[i].v);
		if(x == y)
			continue;
		fa[x] = y;
		sum += eg[i].w;
		tot--;      //因为会有重边  其实我感觉不需要也行
		if(tot == 0)break;
	}
	return sum;
}

int main()
{
	int t;
	int fbb = fb(); 
	scanf("%d",&t);
	for(int k = 1;k <= t;k++)
	{
		scanf("%d %d",&n,&m);
		for(int i = 1;i <= m;i++)
		{
			int a,b,c;
			scanf("%d %d %d",&a,&b,&c);
			eg[i].u = a;
			eg[i].v = b;
			eg[i].w = c;
		}
		for(int i = 1;i <= n;i++) fa[i] = i;
		sort(eg + 1,eg + m + 1,cmp2);   
		int r = bpf();     //  最大白边生成树
		for(int i = 1;i <= n;i++) fa[i] = i;
		sort(eg + 1, eg + m + 1 , cmp1);  
		int l = bpf();	 //最小白边生成树

		int ff = 1;
		for(int i = 1;i <= n;i++)   //特判一下是不是n个点一定能构成一棵树
			if(find(i) != find(1))
			{
				ff = 0;
				break;
			}
		if(ff == 0)   //不能构成一棵树
		{
			printf("Case #%d: No\n",k);
			continue;
		}
		int flag = 0;
		for(int i = 1;i < fbb;i++)     //判断期间是否存在斐波那契数
			if(a[i] >= l && a[i] <= r)
				flag = 1;
		if(flag)
			printf("Case #%d: Yes\n",k);
		else
			printf("Case #%d: No\n",k);
	}

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值