给定一个点数为 nn,边数为 ,权值不超过 109109 的带权连通图,没有自环与重边。
现在要求对于每一条边求出,这条边的边权最大为多少时,它还能出现在所有可能的最小生成树上,如果对于任意边权都出现,则输出 −1−1。
(2≤n≤2×105,n−1≤m≤2×1052 ≤ n ≤ 2×105,n − 1 ≤ m ≤ 2×105)
由于偷懒,我只写了 O(nlog2n)O(nlog2n) 的做法。
分 22 种情况考虑:
- 一条边 不在任意的最小生成树上:
- 则一定要使 wewe 小于最小生成树的上 uu 到 的路径上的最大权值。
- 证明:考虑 KruskalKruskal 的计算过程,先将边按照边权排序,如果 wewe 要在最小生成树上,那么只需要令其在 u,vu,v 各自所在联通块被连接在一起前,加入 e(u,v)e(u,v) 即可,所以只要使 wewe 小于最小生成树的上 uu 到 的路径上的最大权值。
- 一条边 e(u,v)e(u,v) 在其中一个最小生成树上:
- 则其权值等于不在最小生成树上的边 e′(u′,v′)e′(u′,v′),且 u′,v′u′,v′ 的路径经过边 e(u,v)e(u,v) 的权值 we′−1we′−1;
- 证明:由前一个证明可知,e(u,v)e(u,v) 在最小生成树,只需要满足 e′(u′,v′)e′(u′,v′) 的权值都比它大即可。
所以有了上述想法,我们就能自然而然想出一个非常 simple 且 naive 的做法。
只需要任意的求出一个最小生成树,用树链剖分线段树维护树上两点间路径的区间查询和区间取 minmin 即可,O(nlog2n)O(nlog2n)。
复杂度更低的做法(杂谈):
- 树上两点间路径的区间查询和区间取 minmin,可以用 LCTLCT 维护,O(nlogn)O(nlogn);
- 树上两点间路径的区间查询和区间取 minmin,两个操作在本题中是各自独立的,所以区间查询可以用树上倍增,O(nlogn)O(nlogn);
- 而区间取 minmin 呢,方法应该很多,暂时想到一个离线所有的操作,然后在树上打标记,用可并堆来维护最小值,在 u,vu,v 处 push,做到 LCAu,vu,v 时pop ,O(nlogn)O(nlogn);
- 欢迎踊跃发言。
#include <cstdio> #include <cstring> #include <algorithm> #define R register #define Min(_A, _B) (_A < _B ? _A : _B) #define Max(_A, _B) (_A > _B ? _A : _B) template <class TT> void Swap(R TT &A, R TT &B){ R TT t = A; A = B; B = t; } int F() { R int x; R char ch; while(ch = getchar(), ch < '0'|| ch > '9'); x = ch - '0'; while(ch = getchar(), ch >= '0' && ch <= '9') x = ch - '0' + x * 10; return x; } const int Size = 200010, Inf = 2147483647; int n, m, Point[Size], Next[Size << 1], To[Size << 1], W1[Size << 1], W2[Size << 1], q; struct Edge{ int u, v, c, Ans; } e[Size], *p[Size]; void Add(R Edge *t) { Next[++q] = Point[t->u]; Point[t->u] = q; To[q] = t->v; W1[q] = t->c, W2[q] = t - e; Next[++q] = Point[t->v]; Point[t->v] = q; To[q] = t->u; W1[q] = t->c, W2[q] = t - e; } bool cmp(R Edge *i, R Edge *j){ return i->c < j->c; } int Sum[Size], Most[Size], dfn[Size], dfn_index, Pre[Size], A[Size], Who[Size]; int fa[Size], dep[Size], last[Size]; int Find(R int now){ return last[now] == now ? now : last[now] = Find(last[now]); } void DFS1(R int u, R int from) { Sum[u] = 1; dep[u] = dep[fa[u] = from] + 1; for(R int j = Point[u]; j; j = Next[j]) if(To[j] != from) { DFS1(To[j], u); Sum[u] += Sum[To[j]]; if(Sum[Most[u]] < Sum[To[j]]) Most[u] = To[j]; } } void DFS2(R int u, R int from, R int Grand, R int j) { A[dfn[u] = ++dfn_index] = W1[j]; Who[u] = W2[j]; Pre[u] = Grand; for(R int j = Point[u]; j; j = Next[j]) if(Most[u] == To[j]) DFS2(Most[u], u, Grand, j); for(R int j = Point[u]; j; j = Next[j]) if(To[j] != from && To[j] != Most[u]) DFS2(To[j], u, To[j], j); } int S0[1 << 19], Lazy[1 << 19], S1[1 << 19]; void Pushdown(R int node) { if(Lazy[node] < Inf) { Lazy[node << 1] = Min(Lazy[node << 1], Lazy[node]); Lazy[node << 1 | 1] = Min(Lazy[node << 1 | 1], Lazy[node]); S0[node << 1] = Min(S0[node << 1], Lazy[node]); S0[node << 1 | 1] = Min(S0[node << 1 | 1], Lazy[node]); Lazy[node] = Inf; } } void Modify0(R int node, R int begin, R int end, R int l, R int r, R int val) { if(l <= begin && end <= r) { S0[node] = Min(S0[node], val); Lazy[node] = Min(Lazy[node], val); return ; } Pushdown(node); R int mid = begin + end >> 1; if(l <= mid) Modify0(node << 1, begin, mid, l, r, val); if(r > mid) Modify0(node << 1 | 1, mid + 1, end, l, r, val); } int Query0(R int node, R int begin, R int end, R int l, R int r) { if(l > r) return S0[node]; if(l <= begin && end <= r) return S0[node]; Pushdown(node); R int mid = begin + end >> 1, t1 = Inf, t2 = Inf; if(l <= mid) t1 = Query0(node << 1, begin, mid, l, r); if(r > mid) t2 = Query0(node << 1 | 1, mid + 1, end, l, r); return Min(t1, t2); } int Query1(R int node, R int begin, R int end, R int l, R int r) { if(l > r) return S1[node]; if(l <= begin && end <= r) return S1[node]; R int mid = begin + end >> 1, t1 = 0, t2 = 0; if(l <= mid) t1 = Query1(node << 1, begin, mid, l, r); if(r > mid) t2 = Query1(node << 1 | 1, mid + 1, end, l, r); return Max(t1, t2); } void Build1(R int node, R int begin, R int end) { if(begin == end) { S1[node] = A[begin]; return ; } R int mid = begin + end >> 1; Build1(node << 1, begin, mid); Build1(node << 1 | 1, mid + 1, end); S1[node] = Max(S1[node << 1], S1[node << 1 | 1]); } void Build0(R int node, R int begin, R int end) { S0[node] = Lazy[node] = Inf; if(begin == end) return ; R int mid = begin + end >> 1; Build0(node << 1, begin, mid); Build0(node << 1 | 1, mid + 1, end); } void Work(R Edge *i) { R int A = i->u, B = i->v; while(Pre[A] != Pre[B]) { if(dep[Pre[A]] < dep[Pre[B]]) Swap(A, B); Modify0(1, 1, n, dfn[Pre[A]], dfn[A], i->c); R int t = Query1(1, 1, n, dfn[Pre[A]], dfn[A]); i->Ans = Max(i->Ans, t); A = fa[Pre[A]]; } if(A == B) return ; if(dep[A] < dep[B]) Swap(A, B); Modify0(1, 1, n, dfn[B] + 1, dfn[A], i->c); R int t = Query1(1, 1, n, dfn[B] + 1, dfn[A]); i->Ans = Max(i->Ans, t); } int main() { scanf("%d %d", &n, &m); for(R int i = 1; i <= m; i++) e[i] = (Edge){F(), F(), F(), -1}; for(R int i = 1; i <= m; i++){ last[i] = i; p[i] = e + i; } std::sort(p + 1, p + 1 + m, cmp); for(R int i = 1; i <= m; i++) { R int X = Find(p[i]->u), Y = Find(p[i]->v); if(X != Y){ last[X] = Y; Add(p[i]); } } DFS1(1, 0); DFS2(1, 0, 0, 0); Build0(1, 1, n); Build1(1, 1, n); for(R int i = 1; i <= n; i++) last[i] = i; for(R int i = 1; i <= m; i++) { R int X = Find(p[i]->u), Y = Find(p[i]->v); if(X != Y) last[X] = Y; else Work(p[i]); } for(R int i = 1; i <= n; i++) e[Who[i]].Ans = Query0(1, 1, n, dfn[i], dfn[i]); for(R Edge *i = e + 1; i <= e + m; i++) if(i->Ans == Inf) printf("-1 "); else printf("%d ", i->Ans - 1); return 0; }