【论文】命名实体识别


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭❤~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:​​​​​​传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

主要目标

应用

论文介绍

技术方法

BERT编码

BiLSTM特征提取

注意力机制

CRF标注

LoRA

数据处理

数据来源

数据标注

BIO标签定义

核心逻辑

BaLC模型

LoRA结构

实现方式

演示效果


 本文所有资源均可在该地址处获取:地址

概述

实体识别任务(Named Entity Recognition,简称NER)是自然语言处理(NLP)中的一个基本任务,旨在从文本中识别和分类命名实体。命名实体通常包括专有名词,如人名、地名、组织名等。

下图展示了一个简单的实体抽取任务,在句子中抽取出来阿里巴巴(组织名)、马云(人名)和杭州(地名)三个实体。 在这里插入图片描述

主要目标

NER 的主要目标是找到文本中有意义的实体,并将其归类到预定义的类别中。以下是一些常见的类别:

  • 人名(Person):例如“乔布斯”、“马云”。

  • 地名(Location):例如“纽约”、“长城”。

  • 组织名(Organization):例如“微软”、“联合国”。

应用

命名实体识别是自然语言处理领域的一个重要的任务,它在很多具体任务上有着自己的应用:

  • 信息抽取:从大量文档中自动提取有价值的信息。

  • 问答系统:帮助系统更准确地理解问题并返回相关答案。

  • 文本摘要:在生成文本摘要时识别出关键实体以保留重要信息。

  • 推荐系统:通过识别用户偏好的实体来提供个性化推荐。

论文介绍

本文的工作启发于论文BERT-BiLSTM-CRF Chinese Resume Named Entity Recognition

Combining Attention Mechanisms

BERT-BiLSTM-CRF Chinese Resume Named Entity Recognition Combining Attention Mechanisms | Proceedings of the 4th International Conference on Artificial Intelligence and Computer Engineering

技术方法

在这里插入图片描述

BERT编码

首先,将输入的中文文本通过预训练的 BERT 模型进行编码,生成每个字的上下文表示。BERT模型通过其双向Transformer架构,能够捕捉文本中每个字与其前后文之间的复杂关系,从而生成高质量的字级别表示,有助于后续的特征提取和实体识别。

BiLSTM特征提取

接下来,将 BERT 输出的特征向量输入到双向长短时记忆网络(BiLSTM)中,以捕捉序列中的前后依赖关系。BiLSTM网络能够从两个方向处理序列数据,即从前向后和从后向前。使得模型可以充分利用上下文信息,对每个字在整个序列中的位置和角色进行更准确的建模,从而提取出更丰富的特征表示。

注意力机制

在 BiLSTM 层之后,引入注意力机制,以便模型能够聚焦于更相关的特征。注意力机制通过计算序列中各个字之间的相关性权重,使模型能够动态地调整对不同位置的字的关注程度。

CRF标注

最后,将经过注意力机制处理的特征向量输入CRF层,进行全局序列标注,输出最终的实体识别结果。CRF是一种用于序列标注的概率图模体型,它考虑了标注序列的全局依赖关系,从而在预测每个字的标签时,不仅依赖于当前字的特征,还综合考虑其邻近字的标注情况。

论文提出的BERT-BiLSTM-Att-CRF模型在中文数据集上取得了较好的识别效果。

结合论文提出的框架,本文新增了一个LoRA层,用来优化模型

LoRA

神经网络包含许多密集层执行矩阵乘法。这些层中的权重矩阵通常是满秩的。当适应特定下游任务时,研究表明:预训练语言模型拥有较低的内在维度,也就是说,存在一个极低维度的参数,对它进行微调,和在全参数空间中进行微调,训练效果是相近的。受此启发,在参数更新过程中,应当也存在一个相对较低的“本征秩”。对于预训练的权重矩阵,通过低秩分解来约束其更新。在涉及到矩阵相乘的模块,增加一个新的通路,通过前后两个矩阵A,B相乘,第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为r,从而来模拟本征秩。

数据处理

数据来源

本文所用的训练数据是MSRA-NER数据集。

MSRA-NER是由微软亚洲研究院标注的新闻领域的实体识别数据集。该数据集包含5万多条中文实体识别标注数据,实体类别分为人物、地点、机构三类。

数据集包含训练集46364个句子,验证集4365个句子。

格式举例如下:

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">中</span> <span style="color:#000000">共</span> <span style="color:#000000">中</span> <span style="color:#000000">央</span> <span style="color:#000000">致</span> <span style="color:#000000">中</span> <span style="color:#000000">国</span> <span style="color:#000000">致</span> <span style="color:#000000">公</span> <span style="color:#000000">党</span> <span style="color:#000000">十</span> <span style="color:#000000">一</span> <span style="color:#000000">大</span> <span style="color:#000000">的</span> <span style="color:#000000">贺</span> <span style="color:#000000">词</span> <span style="color:#000000">各</span> <span style="color:#000000">位</span> <span style="color:#000000">代</span> <span style="color:#000000">表</span> <span style="color:#000000">、</span> <span style="color:#000000">各</span> <span style="color:#000000">位</span> <span style="color:#000000">同</span> <span style="color:#000000">志</span> <span style="color:#000000">:</span> <span style="color:#000000">在</span> <span style="color:#000000">中</span> <span style="color:#000000">国</span> <span style="color:#000000">致</span> <span style="color:#000000">公</span> <span style="color:#000000">党</span> <span style="color:#000000">第</span> <span style="color:#000000">十</span> <span style="color:#000000">一</span> <span style="color:#000000">次</span> <span style="color:#000000">全</span> <span style="color:#000000">国</span> <span style="color:#000000">代</span> <span style="color:#000000">表</span> <span style="color:#000000">大</span> <span style="color:#000000">会</span> <span style="color:#000000">隆</span> <span style="color:#000000">重</span> <span style="color:#000000">召</span> <span style="color:#000000">开</span> <span style="color:#000000">之</span> <span style="color:#000000">际</span> <span style="color:#000000">,</span> <span style="color:#000000">中</span> <span style="color:#000000">国</span> <span style="color:#000000">共</span> <span style="color:#000000">产</span> <span style="color:#000000">党</span> <span style="color:#000000">中</span> <span style="color:#000000">央</span> <span style="color:#000000">委</span> <span style="color:#000000">员</span> <span style="color:#000000">会</span> <span style="color:#000000">谨</span> <span style="color:#000000">向</span> <span style="color:#000000">大</span> <span style="color:#000000">会</span> <span style="color:#000000">表</span> <span style="color:#000000">示</span> <span style="color:#000000">热</span> <span style="color:#000000">烈</span> <span style="color:#000000">的</span> <span style="color:#000000">祝</span> <span style="color:#000000">贺</span> <span style="color:#000000">,</span> <span style="color:#000000">向</span> <span style="color:#000000">致</span> <span style="color:#000000">公</span> <span style="color:#000000">党</span> <span style="color:#000000">的</span> <span style="color:#000000">同</span> <span style="color:#000000">志</span> <span style="color:#000000">们</span> <span style="color:#000000">致</span> <span style="color:#000000">以</span> <span style="color:#000000">亲</span> <span style="color:#000000">切</span> <span style="color:#000000">的</span> <span style="color:#000000">问</span> <span style="color:#000000">候</span> <span style="color:#000000">!</span>
<span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">O</span> <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span> <span style="color:#000000">O</span></span></span>

数据标注

采用BIO标注方式对获得的文本句子进行标注

BIO数据标注方式是命名实体识别(NER)任务中常用的一种标注方法。BIO代表三种标签:B(Begin),I(Inside)和O(Outside),用于标记文本中每个词属于某个命名实体的开头、内部或外部。以下是对BIO标注方式的详细介绍:

BIO标签定义
  • B(Begin):表示命名实体的开始。一个实体的第一个词标注为B-<实体类型>。

  • I(Inside):表示命名实体的内部。属于同一个实体的后续词标注为I-<实体类型>。

  • O(Outside):表示不属于任何命名实体的词。

例如,B-ORG表示组织实体的开头,I-ORG表示组织实体的内部。下图展示了一个标注好的例子,其中未标注的字段都是无实体(O)。 在这里插入图片描述

核心逻辑

BaLC模型

自定义attention层,bert模型、LSTM模型、CRF模型调用pytorch库中的相关模型,使用BERT预训练的语言模型对输入文本进行字符级编码,获得动态词向量,然后使用双向长短期记忆(BiLSTM)网络提取全局语义特征,然后使用注意力机制分配权重,更好地捕捉关键特征,最后使用条件随机场(CRFs)输出全局最优标记序列。具体定义如下:

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">import</span> <span style="color:#000000">torch</span>.<span style="color:#000000">nn</span> <span style="color:#000000">as</span> <span style="color:#000000">nn</span>
<span style="color:#000000">from</span> <span style="color:#000000">transformers</span> <span style="color:#000000">import</span> <span style="color:#000000">BertPreTrainedModel</span>, <span style="color:#000000">BertModel</span>, <span style="color:#000000">BertConfig</span>
<span style="color:#000000">from</span> <span style="color:#000000">torchcrf</span> <span style="color:#000000">import</span> <span style="color:#000000">CRF</span>
<span style="color:#000000">import</span> <span style="color:#000000">math</span>
<span style="color:#000000">import</span> <span style="color:#000000">torch</span>
​
​
<span style="color:#770088">class</span> <span style="color:#0000ff">Self_Attention</span>(<span style="color:#000000">nn</span>.<span style="color:#000000">Module</span>):
    <span style="color:#000000">def</span> <span style="color:#0000ff">__init__</span>(<span style="color:#000000">self</span>, <span style="color:#000000">input_dim</span>, <span style="color:#000000">dim_k</span>, <span style="color:#000000">dim_v</span>):
        <span style="color:#000000">super</span>(<span style="color:#000000">Self_Attention</span>, <span style="color:#000000">self</span>).<span style="color:#000000">__init__</span>()
        <span style="color:#000000">self</span>.<span style="color:#000000">q</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Linear</span>(<span style="color:#000000">input_dim</span>, <span style="color:#000000">dim_k</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">k</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Linear</span>(<span style="color:#000000">input_dim</span>, <span style="color:#000000">dim_k</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">v</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Linear</span>(<span style="color:#000000">input_dim</span>, <span style="color:#000000">dim_v</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">_norm_fact</span> <span style="color:#981a1a">=</span> <span style="color:#116644">1</span> <span style="color:#981a1a">/</span> <span style="color:#000000">math</span>.<span style="color:#000000">sqrt</span>(<span style="color:#000000">dim_k</span>)
​
    <span style="color:#000000">def</span> <span style="color:#0000ff">forward</span>(<span style="color:#000000">self</span>, <span style="color:#000000">x</span>):
        <span style="color:#000000">Q</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">q</span>(<span style="color:#000000">x</span>)  
        <span style="color:#000000">K</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">k</span>(<span style="color:#000000">x</span>) 
        <span style="color:#000000">V</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">v</span>(<span style="color:#000000">x</span>) 
        <span style="color:#000000">atten</span> <span style="color:#981a1a">=</span> <span style="color:#000000">torch</span>.<span style="color:#000000">bmm</span>(<span style="color:#000000">Q</span>, <span style="color:#000000">K</span>.<span style="color:#000000">permute</span>(<span style="color:#116644">0</span>, <span style="color:#116644">2</span>, <span style="color:#116644">1</span>)) <span style="color:#981a1a">*</span> <span style="color:#000000">self</span>.<span style="color:#000000">_norm_fact</span>  <span style="color:#000000">#</span> <span style="color:#000000">Q</span> <span style="color:#981a1a">*</span> <span style="color:#000000">K</span>.<span style="color:#000000">T</span>()
        <span style="color:#000000">atten</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Softmax</span>(<span style="color:#000000">dim</span><span style="color:#981a1a">=-</span><span style="color:#116644">1</span>)(<span style="color:#000000">atten</span>)
        <span style="color:#000000">output</span> <span style="color:#981a1a">=</span> <span style="color:#000000">torch</span>.<span style="color:#000000">bmm</span>(<span style="color:#000000">atten</span>, <span style="color:#000000">V</span>)  
        <span style="color:#770088">return</span> <span style="color:#000000">output</span>
​
​
<span style="color:#770088">class</span> <span style="color:#0000ff">BERT_BiLSTM_ATT_CRF</span>(<span style="color:#000000">nn</span>.<span style="color:#000000">Module</span>):
    <span style="color:#000000">def</span> <span style="color:#0000ff">__init__</span>(<span style="color:#000000">self</span>, <span style="color:#000000">bert_model</span>, <span style="color:#000000">hidden_dropout_prob</span>, <span style="color:#000000">num_labels</span>, <span style="color:#000000">hidden_dim</span><span style="color:#981a1a">=</span><span style="color:#116644">128</span>):
        <span style="color:#000000">super</span>(<span style="color:#000000">BERT_BiLSTM_ATT_CRF</span>, <span style="color:#000000">self</span>).<span style="color:#000000">__init__</span>()
        <span style="color:#000000">self</span>.<span style="color:#000000">bert</span> <span style="color:#981a1a">=</span> <span style="color:#000000">BertModel</span>.<span style="color:#000000">from_pretrained</span>(<span style="color:#000000">bert_model</span>)
        <span style="color:#000000">bert_config</span> <span style="color:#981a1a">=</span> <span style="color:#000000">BertConfig</span>.<span style="color:#000000">from_pretrained</span>(<span style="color:#000000">bert_model</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">dropout</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Dropout</span>(<span style="color:#000000">hidden_dropout_prob</span>)
​
        <span style="color:#000000">self</span>.<span style="color:#000000">bilstm</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">LSTM</span>(<span style="color:#000000">input_size</span><span style="color:#981a1a">=</span><span style="color:#000000">bert_config</span>.<span style="color:#000000">hidden_size</span>, <span style="color:#000000">hidden_size</span><span style="color:#981a1a">=</span><span style="color:#000000">hidden_dim</span>, <span style="color:#000000">num_layers</span><span style="color:#981a1a">=</span><span style="color:#116644">1</span>, <span style="color:#000000">bidirectional</span><span style="color:#981a1a">=</span><span style="color:#000000">True</span>, <span style="color:#000000">batch_first</span><span style="color:#981a1a">=</span><span style="color:#000000">True</span>)
        <span style="color:#000000">out_dim</span> <span style="color:#981a1a">=</span> <span style="color:#000000">hidden_dim</span><span style="color:#981a1a">*</span> <span style="color:#116644">2</span>
​
        <span style="color:#000000">self</span>.<span style="color:#000000">hidden2tag</span> <span style="color:#981a1a">=</span> <span style="color:#000000">nn</span>.<span style="color:#000000">Linear</span>(<span style="color:#000000">in_features</span><span style="color:#981a1a">=</span><span style="color:#000000">out_dim</span>, <span style="color:#000000">out_features</span><span style="color:#981a1a">=</span><span style="color:#000000">num_labels</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">attention</span> <span style="color:#981a1a">=</span> <span style="color:#000000">Self_Attention</span>(<span style="color:#116644">128</span>, <span style="color:#116644">128</span>, <span style="color:#116644">128</span>)
        <span style="color:#000000">self</span>.<span style="color:#000000">crf</span> <span style="color:#981a1a">=</span> <span style="color:#000000">CRF</span>(<span style="color:#000000">num_tags</span><span style="color:#981a1a">=</span><span style="color:#000000">num_labels</span>, <span style="color:#000000">batch_first</span><span style="color:#981a1a">=</span><span style="color:#000000">True</span>)
​
    <span style="color:#000000">def</span> <span style="color:#0000ff">forward</span>(<span style="color:#000000">self</span>, <span style="color:#000000">input_ids</span>, <span style="color:#000000">tags</span>, <span style="color:#000000">token_type_ids</span><span style="color:#981a1a">=</span><span style="color:#000000">None</span>, <span style="color:#000000">attention_mask</span><span style="color:#981a1a">=</span><span style="color:#000000">None</span>):
        <span style="color:#000000">outputs</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">bert</span>(<span style="color:#000000">input_ids</span>, <span style="color:#000000">token_type_ids</span><span style="color:#981a1a">=</span><span style="color:#000000">token_type_ids</span>, <span style="color:#000000">attention_mask</span><span style="color:#981a1a">=</span><span style="color:#000000">attention_mask</span>)
        <span style="color:#000000">sequence_output</span> <span style="color:#981a1a">=</span> <span style="color:#000000">outputs</span>[<span style="color:#116644">0</span>]  
        <span style="color:#000000">sequence_output</span>, <span style="color:#000000">_</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">bilstm</span>(<span style="color:#000000">sequence_output</span>)  
        <span style="color:#000000">sequence_output</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">dropout</span>(<span style="color:#000000">sequence_output</span>)
        <span style="color:#000000">sequence_output</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">attention</span>(<span style="color:#000000">sequence_output</span>)
        <span style="color:#000000">sequence_output</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">hidden2tag</span>(<span style="color:#000000">sequence_output</span>) 
        <span style="color:#000000">outputs</span> <span style="color:#981a1a">=</span> <span style="color:#000000">self</span>.<span style="color:#000000">crf</span>(<span style="color:#000000">sequence_output</span> , <span style="color:#000000">tags</span>, <span style="color:#000000">mask</span><span style="color:#981a1a">=</span><span style="color:#000000">attention_mask</span>.<span style="color:#000000">byte</span>())
        
        <span style="color:#770088">return</span> <span style="color:#000000">outputs</span>
​</span></span>

LoRA结构

其中,为了优化模型的算法,在Bert的encoder模块加入了LoRA方法,使得模型的训练速度得到提高,训练效果得到提高。 原则上,可以将LoRA应用到神经网络中,以减少可训练参数的数量。在Transformer结构中,自注意力模块有四个权重矩阵(Wq,Wk,Wv,Wo)(W q​ ,W k​ ,W v​ ,W o​ ),MLP模块有两个权重矩阵。通常来说,将LoRA添加到WqW q​ 和WkW k 两个模块中,效果是比较好的。因此,在Q(query)和K(key)模块,插入LoRA层。

<span style="background-color:#f8f8f8"><span style="color:#333333">    <span style="color:#770088">for</span> <span style="color:#000000">layer</span> <span style="color:#770088">in</span> <span style="color:#000000">model</span>.<span style="color:#000000">bert</span>.<span style="color:#000000">encoder</span>.<span style="color:#000000">bert_layer_groups</span>:
        <span style="color:#000000">layer</span>.<span style="color:#000000">bert_layers</span>[<span style="color:#116644">0</span>].<span style="color:#000000">attention</span>.<span style="color:#000000">query</span> <span style="color:#981a1a">=</span> <span style="color:#000000">LinearLora</span>(<span style="color:#000000">layer</span>.<span style="color:#000000">bert_layers</span>[<span style="color:#116644">0</span>].<span style="color:#000000">attention</span>.<span style="color:#000000">query</span>,<span style="color:#000000">rank</span><span style="color:#981a1a">=</span><span style="color:#116644">8</span>,<span style="color:#000000">alpha</span><span style="color:#981a1a">=</span><span style="color:#116644">16</span>)
        <span style="color:#000000">layer</span>.<span style="color:#000000">bert_layers</span>[<span style="color:#116644">0</span>].<span style="color:#000000">attention</span>.<span style="color:#000000">key</span> <span style="color:#981a1a">=</span> <span style="color:#000000">LinearLora</span>(<span style="color:#000000">layer</span>.<span style="color:#000000">bert_layers</span>[<span style="color:#116644">0</span>].<span style="color:#000000">attention</span>.<span style="color:#000000">key</span>,<span style="color:#000000">rank</span><span style="color:#981a1a">=</span><span style="color:#116644">8</span>,<span style="color:#000000">alpha</span><span style="color:#981a1a">=</span><span style="color:#116644">16</span>)
       
    <span style="color:#000000">model</span>.<span style="color:#000000">to</span>(<span style="color:#000000">device</span>)
​</span></span>

实现方式

首先下载Bert预训练模型,然后收集自己要训练的数据集,放入文件中,修改源码中的路径名称。

运行train.py函数,开始训练,可以自行调整训练中的epoch等参数,其中训练的时候会调用测试函数进行输出。

演示效果

运行train.py函数,可以看到模型开始训练,在模型训练结束后,会根据测试集的结果生成测试的结果

<span style="background-color:#f8f8f8"><span style="color:#333333">           <span style="color:#000000">precision</span>    <span style="color:#000000">recall</span>  <span style="color:#000000">f1</span><span style="color:#981a1a">-</span><span style="color:#000000">score</span>   <span style="color:#000000">support</span>
    <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">LOC</span>     <span style="color:#116644">0.9257</span>    <span style="color:#116644">0.8245</span>    <span style="color:#116644">0.8721</span>      <span style="color:#116644">2871</span>
    <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">LOC</span>     <span style="color:#116644">0.8894</span>    <span style="color:#116644">0.8796</span>    <span style="color:#116644">0.8845</span>      <span style="color:#116644">4370</span>
    <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span>     <span style="color:#116644">0.8625</span>    <span style="color:#116644">0.7800</span>    <span style="color:#116644">0.8192</span>      <span style="color:#116644">1327</span>
    <span style="color:#000000">B</span><span style="color:#981a1a">-</span><span style="color:#000000">PER</span>     <span style="color:#116644">0.9513</span>    <span style="color:#116644">0.9021</span>    <span style="color:#116644">0.9261</span>      <span style="color:#116644">1972</span>
    <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">PER</span>     <span style="color:#116644">0.9254</span>    <span style="color:#116644">0.9521</span>    <span style="color:#116644">0.9386</span>      <span style="color:#116644">3845</span>
        <span style="color:#000000">O</span>     <span style="color:#116644">0.9913</span>    <span style="color:#116644">0.9917</span>    <span style="color:#116644">0.9915</span>    <span style="color:#116644">150935</span>
    <span style="color:#000000">I</span><span style="color:#981a1a">-</span><span style="color:#000000">ORG</span>     <span style="color:#116644">0.8631</span>    <span style="color:#116644">0.9255</span>    <span style="color:#116644">0.8932</span>      <span style="color:#116644">5640</span>
<span style="color:#000000">avg</span><span style="color:#981a1a">/</span><span style="color:#000000">total</span>     <span style="color:#116644">0.9804</span>    <span style="color:#116644">0.9803</span>    <span style="color:#116644">0.9802</span>    <span style="color:#116644">170960</span></span></span>

运行demo.py可以根据输入的句子,进行实体识别,例如:

<span style="background-color:#f8f8f8"><span style="color:#333333"><span style="color:#000000">sentence</span> <span style="color:#981a1a">=</span> <span style="color:#aa1111">"在 唐 胜 利 康 复 回 乡 前 一 天 , 北 京 博 爱 医 院 院 长 吴 弦 光 代 表 医 院 向 唐 胜 利 及 其 父 亲 赠 送 编 织 机 。"</span>
<span style="color:#000000">output</span> <span style="color:#981a1a">=</span>[[<span style="color:#aa1111">'<START>'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'B-PER'</span>, <span style="color:#aa1111">'I-PER'</span>, <span style="color:#aa1111">'I-PER'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'B-LOC'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'B-PER'</span>, <span style="color:#aa1111">'I-ORG'</span>, <span style="color:#aa1111">'I-ORG'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'B-LOC'</span>, <span style="color:#aa1111">'B-ORG'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'B-PER'</span>, <span style="color:#aa1111">'I-PER'</span>, <span style="color:#aa1111">'I-PER'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'O'</span>, <span style="color:#aa1111">'<END>'</span>]]
​</span></span>

可以看出,模型能识别句子中的实体,并按照BIO标注返回结果

  • 本文所有资源均可在该地址处获取:地址

 ​​

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值