水下图像增强


✨✨ 欢迎大家来访Srlua的博文(づ ̄3 ̄)づ╭~✨✨

🌟🌟 欢迎各位亲爱的读者,感谢你们抽出宝贵的时间来阅读我的文章。

我是Srlua小谢,在这里我会分享我的知识和经验。🎥

希望在这里,我们能一起探索IT世界的奥妙,提升我们的技能。🔮

记得先点赞👍后阅读哦~ 👏👏

📘📚 所属专栏:传知代码论文复现

欢迎访问我的主页:Srlua小谢 获取更多信息和资源。✨✨🌙🌙

​​

​​

目录

概述

一、论文思路

二、模型介绍:

三、实现方法

四、复现过程(重要)

部署方式


概述

2021年11月,提出一种用于水下图像增强的U型Transformer模型,这是首次在水下图像增强任务中使用Transfomer模型,并且作者同时也发布了《U-shape Transformer for Underwater Image Enhancement》这篇文章。它主要针对水下图像增强任务,通过神经网络训练的方式,将模糊的,低分辨率的,对比度低的水下图像,转换成高清的、高分辨率的,对比度高的图像。并且作者也发布了一个大型的水下图像数据集LSUI,为后续在水下图像增强方向提供重要贡献。

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转

一、论文思路

水下杂质的光吸收和散射导致水下成像质量差。现有的基于数据驱动的水下图像增强(UIE)技术缺乏包含各种水下场景和高保真参考图像的大规模数据集。此外,没有充分考虑不同颜色通道和空间区域的不一致衰减。为此,本文建立了大尺度水下图像(LSUI)数据集,并设计了U型Transformer。U型变压器集成了通道型多尺度特征融合变压器(CMSFFT)模块和针对UIE任务设计的空间型全局特征建模变压器(SGFMT)模块,增强了网络对衰减更严重的颜色通道和空间区域的关注。

二、模型介绍:

整体架构:包括基于 CMSFFT 和 SGFMT 的生成器和鉴别器。在生成器中,

  • (1) 编码:除了直接输入到网络之外,原始图像将分别进行3次下采样。然后经过11卷积后,将三个尺度特征图输入到对应的尺度卷积块中。四个卷积块的输出是CMSFFT和SGFMT的输入。

  • (2) 解码: 特征重新映射后,SGFMT输出直接发送到第一个卷积块。同时,4个卷积不同规模的区块将接收来自CMSFFT的四个输出。在判别器中,四个卷积块的输入包括:自身上层输出的特征图、来自解码部分的相应尺寸的特征图以及下采样到相应尺寸后通过11卷积生成的特征图使用参考图像。通过所描述的多尺度连接,梯度流可以在生成器和鉴别器之间在多个尺度上自由流动,从而可以获得稳定的训练过程,丰富生成图像的细节。

在这里插入图片描述

三、实现方法

1、SGFMT:用于替代生成器原来的瓶颈层,可以辅助网络对全局信息进行建模,并加强网络对严重退化部分的关注。具体流程大概为:输入特征图通过线性投影转化为一维序列然后嵌入位置编码进入Transformer层(每一个Transformer层包含一个多头注意力块(MHA)和一个前馈神经网络(FFN)),得到输出序列后通过特征映射转化为输出特征图。 在这里插入图片描述 2、CMSFFT: 为了加强网络对衰减更严重的颜色通道的关注,我们设计了CMSFFT块来代替原始生成器编码解码架构的跳跃连接,它由以下三个部分组成。

  • (1)、多尺度特征编码(Multi-Scale Feature Encoding):输入是不同尺度的特征图, 直接应用于分区原始图像的线性投影不同,我们使用具有相关滤波器大小在不同尺度的特征图上进行线性投影。

  • (2)、通道方式多头注意力(CMHA):CMHA 块有 6 个输入,其中 IN 表示实例规范化操作。这种注意力操作沿着通道轴而不是经典的补丁轴进行,可以引导网络关注图像质量下降更严重的通道。此外,在相似度图上使用IN来帮助梯度流顺利传播。

  • (3)、前馈网络(FFN):与前向传播类似,包含多层感知机(MLP)和归一化层(LN)。 在这里插入图片描述

3、损失函数:为了利用LAB和LCH颜色空间更宽的色域表示范围以及更准确地描述颜色饱和度和亮度,我们设计了结合RGB、LAB和LCH颜色空间的多颜色空间损失函数来训练我们的网络。 其中α、β、γ、μ为超参数,经过大量实验分别设置为0.001、1、0.1、100。后面的四个分别是生成器的损失函数它们是定义好的。 在这里插入图片描述

四、复现过程(重要)

先看结果,原图像与增强之后的图像对比 在这里插入图片描述 能非常直观的感觉出增强效果还是非常好的,接下来是具体的步骤。 代码结构 在这里插入图片描述 1、在Pycharm中导入项目; 2、下载数据集LSUI并将数据集添加到项目data目录中 数据集下载链接:详见附件; 在这里插入图片描述

在这里插入图片描述 在mytest.py 在这里插入图片描述 (2)、修改权重路径 mytest.py 在这里插入图片描述

4、测试之前预训练的模型 预训练模型链接:详见附件 可以直接使用笔者之前训练好的权重去直接测试mytest.py

在这里插入图片描述 5、运行mytrain.py文件: 在这里插入图片描述 6、运行test.ipynb文件: 在这里插入图片描述 7、得出输出图像 在这里插入图片描述

  • 需要本文的详细复现过程的项目源码、数据和预训练好的模型可从该地址处获取完整版:地址跳转

部署方式

python 3.7, Pytorch 1.8 编译器采用Pycharm,拿到代码之后,结合ReadMe以及“requirements.txt”配置好环境之后,可以直接使用预训练的模型去处理水下图像;也可以根据自己的需求重新训练一整个网络模型。

 ​​

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值