目录
1.01背包
有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 ii 件物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
代码展示
#include<bits/stdc++.h>
using namespace std;
const int N = 1010;
int n,m;
int v[N],w[N];
int f[N];
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
f[j]=max(f[j],f[j-v[i]]+w[i]);
cout<<f[m]<<endl;
}
2.完全背包
有 N 种物品和一个容量是 V 的背包,每种物品都有无限件可用。
第 i 种物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行两个整数 vi,wi用空格隔开,分别表示第 ii 种物品的体积和价值。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10
代码展示
#include<bits/stdc++.h>
using namespace std;
int v[1010],w[1010]
int f[1010];
int main()
{
int N,V;
cin>>N>>V;
for(int i=1;i<=N;i++)
cin>>v[i]>>w[i];
for(int i=1;i<=N;i++)
for(int j=v[i];j<=V;j++)
f[j]=max(f[j],f[j-v[i]]+w[i]);
cout<<f[V];
}
3.多重背包
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 ii 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<vi,wi,si≤100
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码展示
#include<bits/stdc++.h>
using namespace std;
int a[100010],b[100010],f[100010];
int n,m;
int main()
{
cin>>n>>m;
int t=0;
while(n--)
{
int v,w,s;
cin>>v>>w>>s;
while(s--)
{
for(int j=m;j>=v;j--)
f[j]=max(f[j],f[j-v]+w);
}
}
cout<<f[m];
}
4.多重背包 ||
有 N 种物品和一个容量是 V 的背包。
第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出格式
输出一个整数,表示最大价值。
数据范围
0<N≤1000
0<V≤2000
0<vi,wi,si≤2000
提示:
本题考查多重背包的二进制优化方法。
输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10
代码展示
#include<bits/stdc++.h>
using namespace std;
int v[100010],w[100010],f[20020];
int n,m;
int main()
{
cin>>n>>m;
int cnt=0;
while(n--)
{
int a,b,c;
cin>>a>>b>>c;
int k=1;
while(k<=c)
{
cnt++;
v[cnt]=k*a;
w[cnt]=k*b;
c-=k;
k*=2;
}
if(c>0)
{
cnt++;
v[cnt]=a*c;
w[cnt]=b*c;
}
}
n=cnt;
for(int i=1;i<=n;i++)
for(int j=m;j>=v[i];j--)
f[j]=max(f[j],f[j-v[i]]+w[i]);
cout<<f[m];
}
5.分组背包
有 N 组物品和一个容量是 V 的背包。
每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 vij,价值是 wij,其中 i 是组号,j 是组内编号。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。
接下来有 N 组数据:
- 每组数据第一行有一个整数 Si,表示第 i 个物品组的物品数量;
- 每组数据接下来有 Si 行,每行有两个整数 vij,wij,用空格隔开,分别表示第 i 个物品组的第 j 个物品的体积和价值;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤100
0<Si≤100
0<vij,wij≤100
输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8
代码展示
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N];
int v[N][N],w[N][N],s[N];
int n,m;
int main()
{
cin>>n>>m;
for(int i=0;i<n;i++)
{
cin>>s[i];
for(int k=0;k<s[i];k++)
cin>>v[i][k]>>w[i][k];
}
for(int i=0;i<n;i++)
for(int j=m;j>=0;j--)
for(int k=0;k<s[i];k++)
{
if(j>=v[i][k])
f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
}
cout<<f[m];
}