HDU-1043 java实现 单广+康托展开

本文介绍了一个经典的搜索问题——8拼图的解法,并详细解释了如何使用康托展开和宽度优先搜索(BFS)来解决这个问题。通过预先计算所有可能状态的解决方案并存储结果,实现快速解答各种初始配置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       

Eight

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 28459    Accepted Submission(s): 7557
Special Judge


Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 x

where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8
9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12
13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x
r-> d-> r->

The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
 

Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

1 2 3
x 4 6
7 5 8

is described by this list:

1 2 3 x 4 6 7 5 8
 

Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
 

Sample Input
2 3 4 1 5 x 7 6 8
 

Sample Output

ullddrurdllurdruldr




这是一道经典的搜索题,在网上一搜一大把的解析……然鹅,一开始我只是想做道简单的BFS练练手先……没想到这道题如此“经典”,直接刚了一整天……下面开始我的总结。(新手向)
在做这道题之前,首先你得有预备知识,才能做出这道题。(康托展开/双向BFS/A*/逆序数奇偶性,怎么着你也得会一种,康托展开必备)
很明显这是一道搜索题。那么采用深搜还是宽搜呢?这个很显然不能用深搜。交换两个数,深搜可以深到天际,量太大了。而宽搜可以更快地遍历到所有的状态。我们的目标就是把所有的362880种状态都找出来,这点宽搜的缺点反而变成了优点。

好,我们得出结论,用宽搜。然后你会萌萌地发现,终止条件是啥啊??呵呵,这时候我们悄悄看一眼DISCUSS,发现一个词“康托展开”。事实上,这道题不是用宽搜搜出答案来的。我们只是用宽搜去打表。我们会发现,所有的状态一共只有9!个,其实是有限的。而每个状态到达目标状态的方式都是唯一的。(这么说不太准确,其实方式可能有多种,但是对于某一种特点的解题策略而言,得出的结论应该是一样的。)所以说,思路来了:如果我们能求出那9!种状态各自的方法,那么只要把它存起来,输入哪种状态就输出答案就好了,绝对省时。
当然,萌新全凭自己写出代码还是不容易的。先看懂别人写的才是王道。

这里贴上代码,暂时只有一种,单向BFS+康托打表,我认为还是比较好理解的:

import java.util.Scanner;  
import java.util.LinkedList;
public class Main {
    static int[] fac={1,1,2,6,24,120,720,5040,40320,362880};
    static NodeWay[] nn=new NodeWay[363000];
    static int[][] dir={{0,1},{1,0},{-1,0},{0,-1}};
    
    
	public static void main(String[] args) {
		// TODO 自动生成的方法存根
       Scanner cin=new Scanner(System.in);
       for(int i=0;i<nn.length;i++)
       {
    	   nn[i]=new NodeWay();
    	   nn[i].Father=-1;
       }
       bfs();
       
       while(cin.hasNext())
       {
    	   int[] cc=new int[9];
    	   int count=0;
    	   String str=cin.nextLine();
    	   for(int i=0;i<str.length();i++)
    	   {
    		   if(str.charAt(i)==' ')continue;
    		   if(str.charAt(i)=='x'){
    			   cc[count++]=0;
    		   }else{
    			   cc[count++]=Integer.valueOf(str.charAt(i)+"");
    		   }
    	   }
    	   int cantorr=cantor(cc,9);
    	   
    	   if(nn[cantorr].Father==-1)System.out.println("unsolvable");
    	   else{
    		   while(nn[cantorr].Father!=0)
    		   {
    			   System.out.print(nn[cantorr].Way);
    			   cantorr=nn[cantorr].Father;
    		   }
    		   System.out.println();
    	   }
       }
	}
	
	static int cantor(int[] number,int n)
	{   
		int result=0;
		for(int i=0;i<n;i++)
		{   
			int count=0;
			for(int j=i+1;j<n;j++)
			{
				if(number[i]>number[j])count++;
			}
			result+=count*fac[n-i-1];
		}
		return result+1;
	}
    
	static void bfs()    //从123456780的末状态开始往之前的状态搜,搜出一种不同的就给他存起来
	{
		Node start=new Node();
		start.CantorValue=46234;
		for(int i=0;i<9;i++)
		{
			start.map[i]=(i+1)%9;
		}
		start.loc=8;
		nn[46234].Father=0;
		int row;
		int col;
		LinkedList<Node> queue=new LinkedList<Node>();
		queue.add(start);
		while(!queue.isEmpty())
		{
			Node node=queue.poll();
			for(int i=0;i<4;i++)
			{
				row=node.loc/3+dir[i][0];
				col=node.loc%3+dir[i][1];
				if(row<0||col<0||row>=3||col>=3)continue;
				Node work=new Node();
				work.CantorValue=node.CantorValue;
				work.loc=node.loc;
				for(int k=0;k<9;k++){
					work.map[k]=node.map[k];
				}
				work.loc=row*3+col;
				int temp=0;
				temp=work.map[node.loc];
				work.map[node.loc]=work.map[work.loc];
				work.map[work.loc]=temp;
				work.CantorValue=cantor(work.map,9);
				if(nn[work.CantorValue].Father==-1)
				{
					nn[work.CantorValue].Father=node.CantorValue;
					if(i==0)nn[work.CantorValue].Way='l';
					if(i==1)nn[work.CantorValue].Way='u';
					if(i==2)nn[work.CantorValue].Way='d';
					if(i==3)nn[work.CantorValue].Way='r';
					queue.offer(work);
				}
			}
		}
	}
}

class NodeWay
{
	char Way;
	int Father;
	NodeWay(){}
}

class Node
{
	int CantorValue;           //康托值
	int[] map=new int[9];      //当前状态。用一维数组表示。
	int loc;     //标记出x的位置,方便操作
	Node(){}
}

### 关于HDU-1443问题的Java实现 针对HDU平台上的题目ID为1054的问题,在64位整数输入输出格式方面应采用`%lld`,而Java类名需指定为主类名为`Main`[^1]。 对于解决该问题的一个实例是在处理两个数组中寻找重复数字的任务时。在Java方法内部可以利用`duplication[0]`来替代C/C++里的指针形式`*duplication`,这使得可以在返回布尔值的同时获取所需的数值[^2]。 下面给出一段适用于此场景下的Java代码片段: ```java import java.util.HashSet; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); HashSet<Integer> set = new HashSet<>(); while (scanner.hasNextInt()) { int num = scanner.nextInt(); if (!set.add(num)) { // 如果add失败,则说明已经存在这个元素 System.out.println("Duplicate number found: " + num); break; // 或者继续收集所有的重复项取决于具体需求 } } scanner.close(); } private static boolean duplicate(int numbers[], int length, int duplication[]) { if (numbers == null || length <= 0) return false; for (int i = 0; i < length; ++i) { while (numbers[i] != i) { if (numbers[i] == numbers[numbers[i]]) { duplication[0] = numbers[i]; return true; } else { // Swap elements to their correct positions. int temp = numbers[numbers[i]]; numbers[numbers[i]] = numbers[i]; numbers[i] = temp; } } } return false; } } ``` 这段程序首先定义了一个`HashSet`用于存储读取到的数据,并通过尝试向集合中添加新元素的方式来检测是否存在重复数据;一旦发现有重复即刻打印并停止进一步操作。另外还提供了一个辅助函数`duplicate()`用来判断给定数组内是否有任何重复元素,并将找到的第一个重复值存入传入参数`duplication[]`的第一位置上以便调用方访问。 需要注意的是上述代码仅作为示例展示如何运用特定技巧解决问题,并不一定完全符合原题目的所有约束条件以及边界情况处理,请根据实际题目描述调整逻辑细节以满足要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值