DataWhale“深入浅出PyTorch”第七章

教程前四章的打卡记录:深入迁出pytorch专栏
该教程的GitHub地址:深入浅出PyTorch
哔哩哔哩视频地址:深入浅出Pytorch

DataWhale“深入浅出PyTorch”第七章—— PyTorch可视化

ps:本次主要都是解决 BUG了

1可视化网络结构

随着深度神经网络做的的发展,网络的结构越来越复杂,我们也很难确定每一层的输入结构,输出结构以及参数等信息,这样导致我们很难在短时间内完成debug。因此掌握一个可以用来可视化网络结构的工具是十分有必要的。

深度学习库Keras中可以调用一个叫做model.summary()的API来很方便地实现,调用后就会显示我们的模型参数,输入大小,输出大小,模型的整体参数等。

而在pytorch中,人们开发了torchinfo工具包 ( torchinfo是由torchsummary和torchsummaryX重构出的库, torchsummary和torchsummaryX已经许久没更新了)

1.1 使用print函数打印模型基础信息

import torchvision.models as models
model = models.resnet18()
print(model)#打印Resnet18的模型结构

部分输出结果:
在这里插入图片描述

单纯的print(model),只能得出基础构件的信息,既不能显示出每一层的shape,也不能显示对应参数量的大小,为了解决这些问题,我们就需要使用torchinfo

1.2 使用torchinfo可视化网络结构

torch的安装

  • 方法一:pip install torchinfo

  • 方法二:conda install -c conda-forge torchinfo

torchinfo的使用
只需要使用torchinfo.summary()就行了,必需的参数分别是model,input_size[batch_size,channel,h,w],更多参数可以参考documentation

import torchvision.models as models
from torchinfo import summary
resnet18 = models.resnet18() # 实例化模型
summary(model, (1, 3, 224, 224)) # 1:batch_size 3:图片的通道数 224: 图片的高宽

torchinfo的结构化输出结果

在这里插入图片描述

在这里插入图片描述
可以看到torchinfo提供了更加详细的信息,包括模块信息(每一层的类型、输出shape和参数量)、模型整体的参数量、模型大小、一次前向或者反向传播需要的内存大小等。

2 CNN可视化

卷积神经网络(CNN)是深度学习中非常重要的模型结构,它广泛地用于图像处理,极大地提升了模型表现,推动了计算机视觉的发展和进步。但CNN是一个“黑盒模型”,人们并不知道CNN是如何获得较好表现的,由此带来了深度学习的可解释性问题。如果能理解CNN工作的方式,人们不仅能够解释所获得的结果,提升模型的鲁棒性,而且还能有针对性地改进CNN的结构以获得进一步的效果提升。

理解CNN的重要一步是可视化,包括可视化特征是如何提取的、提取到的特征的形式以及模型在输入数据上的关注点等。

2.1 CNN卷积核可视化

卷积核在CNN中负责提取特征,可视化卷积核能够帮助人们理解CNN各个层在提取什么样的特征,进而理解模型的工作原理。例如在Zeiler和Fergus 2013年的paper中就研究了CNN各个层的卷积核的不同,他们发现靠近输入的层提取的特征是相对简单的结构,而靠近输出的层提取的特征就和图中的实体形状相近了(即越深层学习到的越深层细节的特征),如下图所示:
请添加图片描述
请添加图片描述
请添加图片描述
在PyTorch中可视化卷积核也非常方便,核心在于特定层的卷积核即特定层的模型权重,可视化卷积核就等价于可视化对应的权重矩阵。下面给出在PyTorch中可视化卷积核的实现方案,以torchvision自带的VGG11模型为例。

首先加载模型,并确定模型的层信息:

import torch
from torchvision.models import vgg11

model = vgg11(pretrained=True)
print(dict(model.features.named_children()))
{
   '0': Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '1': ReLU(inplace=True),
 '2': MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False),
 '3': Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '4': ReLU(inplace=True),
 '5': MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False),
 '6': Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '7': ReLU(inplace=True),
 '8': Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '9': ReLU(inplace=True),
 '10': MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False),
 '11': Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '12': ReLU(inplace=True),
 '13': Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)),
 '14'
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值