POJ3169 Layout【差分约束】

探讨了如何解决布局问题,特别是在奶牛排队场景中,考虑到奶牛间的喜好和厌恶关系,利用差分约束系统求解最大距离。通过构建图模型,应用SPFA算法寻找可能的最大距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Layout

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 15418 Accepted: 7406

Description

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate). 

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated. 

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input

Line 1: Three space-separated integers: N, ML, and MD. 

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart. 

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output

27

Hint

Explanation of the sample: 

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart. 

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

Source

USACO 2005 December Gold

问题链接:POJ3169 Layout

问题描述:有N只奶牛(从1开始编号)。这N只奶牛按编号顺序站在一条直线上,奶牛们想和自己喜欢的奶牛离得近些,与自己不喜欢的奶牛离得远些,输入 N, ML,  MD,分别表示奶牛的总数,ML条限制:A B D表示奶牛A和B最多相距D(喜欢)。MD条限制:A B D表示奶牛A和B至少相距D(不喜欢)。注意多个奶牛可以站在同一个位置。问在满足限制的条件下1和N的距离的最大值。

解题思路:差分约束求最大值,用最短路。设d[i]表示奶牛i与奶牛1的距离,注意有隐含限制条件:由于奶牛们是按编号顺序排列的,且多个奶牛可以站在同一个位置,所以有d[i]-d[i-1]>=0。

AC的C++程序:

#include<iostream>
#include<cstring>
#include<vector>
#include<queue>

using namespace std;

const int N=1010;
const int INF=0x3f3f3f3f;

struct Edge{
	int v,w;
	Edge(int v,int w):v(v),w(w){}
};

vector<Edge>g[N];
int dist[N];
bool vis[N];
int cnt[N];
int n;//结点数 

bool spfa(int s)
{
	memset(vis,false,sizeof(vis));
	memset(cnt,0,sizeof(cnt));
	memset(dist,INF,sizeof(dist));
	dist[s]=0;
	cnt[1]=1;
	vis[s]=true;
	queue<int>q;
	q.push(s);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=false;
		for(int i=0;i<g[u].size();i++)
		{
			int v=g[u][i].v;
			int w=g[u][i].w;
			if(dist[v]>dist[u]+w)
			{
				dist[v]=dist[u]+w;
				if(!vis[v])
				{
					vis[v]=true;
					q.push(v);
					cnt[v]++;
					if(cnt[v]>n)
					  return false;//存在环 
				}
			}
		}
	}
	return true; 
}

int main()
{
	int l,d,a,b,w;
	while(~scanf("%d%d%d",&n,&l,&d))
	{
		for(int i=0;i<N;i++)
		  g[i].clear();
		while(l--)
		{
			scanf("%d%d%d",&a,&b,&w);
			g[a].push_back(Edge(b,w));
		}
		while(d--)
		{
			scanf("%d%d%d",&a,&b,&w);
			g[b].push_back(Edge(a,-w));
		}
		//隐含限制条件
		for(int i=2;i<=n;i++)
		  g[i].push_back(Edge(i-1,0));
		bool flag=spfa(1);
		if(flag)
		{
			if(dist[n]==INF)//1到n不可达 
			  printf("-2\n");
			else
			  printf("%d\n",dist[n]);
		}
		else//存在负环 
		  printf("-1\n"); 
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值