研究过程
- 起源与提出:1687 年牛顿提出 “三体问题”,旨在研究三个可视为质点的天体在相互之间万有引力作用下的运动规律,但因运动方程过于复杂,难以得到完全解。
- 欧拉的贡献1:1767 年,瑞士数学家莱昂哈德・欧拉根据旋转的二体引力场推算出了其中的三个特解,即 L1、L2 和 L3。
- 拉格朗日的突破1:1772 年,法国数学家约瑟夫・路易・拉格朗日推算出了剩下的两个特解 L4 和 L5。至此,平面圆型限制性三体问题的五个特解全部被找到,后来人们将这五个点统称为拉格朗日点。
- 观测证实1:1906 年,天文学家马克斯・沃尔夫发现一颗位于火星和木星间主带以外的小行星,它与木星、太阳构成等边三角形,位于木星前方的 L4 点。同年还发现 617 号小行星在木星后方的 L5 点。20 世纪 80 年代,在土星和它的大卫星构成的运动系统中也发现类似等边三角形。截至 2009 年,天文学家在木星的 L4 和 L5 周围各发现超过 1000 颗小行星,进一步证实了拉格朗日点的存在。
重要意义
- 在天文学领域
- 解释天体分布:有助于解释为何某些小行星和卫星能稳定存在于行星或太阳的特定轨道上,如木星的特洛伊小行星群位于木星的 L4 和 L5 点。
- 观测优势1:日地系统的 L1 点能提供不间断的太阳视野,是观测太阳的绝佳位置;L2 点有稳定的热力学环境以及与地球相对固定的构型,利于开展天文观测任务,如詹姆斯・韦伯空间望远镜就位于日地系统的 L2 点。
- 在航天领域
- 节省能源:航天器位于拉格朗日点时,受两个大天体引力作用,可保持相对稳定的轨道,能以最小的能量消耗维持轨道,节省大量燃料,降低航天任务成本。
- 作为星际探测中转站1:可作为星际探测的理想中转站,如月球 - 地球系统的 L1 点可作为地月转移的中继点,为航天器的轨道转移和姿态调整等提供便利,有助于更深入地开展深空探测任务。
- 在天体力学理论方面
- 推动三体问题研究:是限制性三体问题的重要特解,为三体问题的研究提供了特殊情况和突破口