《算法分析与设计》Week 6

本文探讨了如何通过贪心算法解决分配不同大小饼干给孩子的满足度问题,以最大化满足的孩子数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

455. Assign Cookies


Description:

Assume you are an awesome parent and want to give your children some cookies. But, you should give each child at most one cookie. Each child i has a greed factor gi, which is the minimum size of a cookie that the child will be content with; and each cookie j has a size sj. If sj >= gi, we can assign the cookie j to the child i, and the child i will be content. Your goal is to maximize the number of your content children and output the maximum number.

Note:
You may assume the greed factor is always positive. 
You cannot assign more than one cookie to one child.

Example 1:

Input: [1,2,3], [1,1]

Output: 1

Explanation: You have 3 children and 2 cookies. The greed factors of 3 children are 1, 2, 3. 
And even though you have 2 cookies, since their size is both 1, you could only make the child whose greed factor is 1 content.
You need to output 1.

Example 2:

Input: [1,2], [1,2,3]

Output: 2

Explanation: You have 2 children and 3 cookies. The greed factors of 2 children are 1, 2. 
You have 3 cookies and their sizes are big enough to gratify all of the children, 
You need to output 2.

Solution:

一、题意理解

     你是位很好的父亲,有一堆孩子,和一堆饼干。饼干的大小不同,不同孩子对饼干大小的“满足度”不同,每个孩子最多只能分一个饼干,你要做的就是怎么分配饼干,可以使得尽可能多的孩子满足。


二、分析

     1、典型的贪心算法问题,可以先对孩子们“满足度”和饼干大小进行排序,从小到大进行遍历,如果当前饼干可以满足某个孩子,就分配给他,不能的话,就遍历下一个较大的饼干,以此类推。核心分配方法就是尽可能使用最小的饼干满足某个孩子

     2、代码如下:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        
        int result = 0;
        vector<int>::iterator gi = g.begin(), si = s.begin();
        while(gi != g.end() && si < s.end())
        {
            if(*si >= *gi)
            {
                result++;
                si++;
                gi++;
            }
            else
                si++;
        }
        return result;
    }
};




### 关于山东大学程序设计 Week5 的课程资料作业 尽管当前提供的引用并未直接提及山东大学程序设计思维实践的第5周具体内容,但从已有参考资料来看,可以推测该课程可能涉及的内容范围以及学习目标。 通常情况下,在类似的程序设计课程中,第五周的学习重点可能围绕以下几个方面展开: #### 可能的主题方向 1. **动态规划基础** 动态规划是一种解决多阶段决策过程最优化问题的方法。它通过将复杂问题分解成更简单的子问题来求解最优解[^2]。如果 Week5 涉及此主题,学生可能会接触到经典的动态规划问题,例如背包问题、最长公共子序列(LCS)、矩阵链乘法等。 2. **贪心算法的应用** 贪心算法的核心在于每一步都做出局部最优的选择,期望最终达到全局最优解。这种策略适用于某些特定场景下的问题,比如活动选择问题、霍夫曼编码等问题[^1]。 3. **图论初步** 图论作为离散数学的重要分支之一,在计算机科学中有广泛的应用价值。Week5 也可能引入基本概念如连通性检测、最小生成树(Kruskal 和 Prim 算法),或者单源最短路径(Dijkstra 算法)[^4]。 4. **高级数据结构介绍** 高级的数据结构能够显著提升解决问题效率。例如堆(Heap)用于实现优先队列;并查集(Union-Find Set)用来处理集合合并操作等等[^3]。 以下是基于上述假设整理的一道典型练习题及其解答思路: --- #### 练习题示例:最大连续子数组和 给定一个整数数组 `nums` ,找到其中具有最大和的一个连续子数组,并返回其总和。 ##### 思路分析: 采用 Kadane's Algorithm 来高效完成任务。核心思想是在遍历过程中维护两个变量——当前的最大子数组结束位置处的累加值(`current_sum`)以及迄今为止发现的整体最大值(`max_so_far`)。每当遇到新的元素时更新这两个量即可得出答案。 ```python def maxSubArray(nums): current_sum = nums[0] max_so_far = nums[0] for i in range(1, len(nums)): # 判断是否应该重新开始一个新的子数组还是延续之前的 current_sum = max(nums[i], current_sum + nums[i]) # 更新整体最大值 max_so_far = max(max_so_far, current_sum) return max_so_far ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值