目录
1.算法概述
在诸多聚类算法中,蚁群算法是一种较新且较高效率的算法。蚁群算法在数据挖掘聚类中的应用所采用的生物原型为蚁群的蚁穴清理行为和蚁群觅食行为。这里主要阐述两种行为与聚类的结合点。在蚁群蚁穴清理行为中,蚁群会将蚁穴中分布分散的蚂蚁尸体堆积成相对集中的几个大堆。在聚类分析中,将这些分散分布的蚂蚁尸体视为待分析的数据集合,而最终堆积而成的大堆则对应于最终的聚类结果。在蚁群的觅食行为中,蚂蚁依据一定的概率选择觅食路径,使得蚂蚁所寻找的路径呈现多样化状态。在基于蚁群觅食行为的聚类分析中,将数据视为具有不同属性的蚂蚁,而将聚类结果视为食物源,所不同的是,此时认为存在多个食物源。这样各个蚂蚁通过一定的概率实现移动,并聚集在不同的食物源而实现聚类。