CodeForces 438D The Child and Sequence

本文解析了CodeForces平台上的一道题目“The Child and Sequence”,介绍了如何使用线段树解决单点更新、区间更新和区间求和的问题,并提供了一段通过测试的C++代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://codeforces.com/problemset/problem/438/D


The Child and Sequence

time limit per test :4 seconds
memory limit per test :256 megabytes
input :standard input
output :standard output

At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.

Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array a[1], a[2], ..., a[n]. Then he should perform a sequence of m operations. An operation can be one of the following:

  1. Print operation l, r. Picks should write down the value of .
  2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[imod x for each i (l ≤ i ≤ r).
  3. Set operation k, x. Picks should set the value of a[k] to x (in other words perform an assignment a[k] = x).

Can you help Picks to perform the whole sequence of operations?

Input

The first line of input contains two integer: n, m (1 ≤ n, m ≤ 105). The second line contains n integers, separated by space: a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — initial value of array elements.

Each of the next m lines begins with a number type .

  • If type = 1, there will be two integers more in the line: l, r (1 ≤ l ≤ r ≤ n), which correspond the operation 1.
  • If type = 2, there will be three integers more in the line: l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 109), which correspond the operation 2.
  • If type = 3, there will be two integers more in the line: k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 109), which correspond the operation 3.

Output

For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.

Examples

Input
5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3
Output
8
5
Input
10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10
Output
49
15
23
1
9

Note

Consider the first testcase:

  • At first, a = {1, 2, 3, 4, 5}.
  • After operation 1, a = {1, 2, 3, 0, 1}.
  • After operation 2, a = {1, 2, 5, 0, 1}.
  • At operation 3, 2 + 5 + 0 + 1 = 8.
  • After operation 4, a = {1, 2, 2, 0, 1}.
  • At operation 5, 1 + 2 + 2 = 5.

思路:稍微分析一下题目,就能够看出这道题是线段树的单点更新,区间更新,区间求和问题。但是有一个问题存在,这里区间更新是取模,直接对和进行取模肯定是错误的,所以得换种想法做。考虑题目给的时间很充足,而且测试数据是单个样例测试,所以可以尝试区间更新时更新到叶子节点。但这种做法好像还是不太保险,仔细斟酌一下,其实对于取模操作,只有当该数大于模数,才需要更新,否则不需要,这样就类似于DFS的剪枝了,所以将每个区间的最大值求出来,更新时与模数比较,模数大就直接返回,不必向下更新了,以节约时间开销,这样就更有胜算了,事实证明是的,后来算了一下复杂度,发现这样做的话复杂度并不是很高。详见代码。


附上AC代码:

#include <bits/stdc++.h>
#define lrt rt<<1
#define rrt rt<<1|1
#define lson l, m, lrt
#define rson m+1, r, rrt
using namespace std;
typedef long long ll;
const int maxn = 100005;
ll sumv[maxn<<2], maxv[maxn<<2];
int n, q;

void push_up(int rt){
	sumv[rt] = sumv[lrt]+sumv[rrt];
	maxv[rt] = max(maxv[lrt], maxv[rrt]);
}

void build(int l, int r, int rt){
	if (l == r){
		int num;
		cin >> num;
		sumv[rt] = num;
		maxv[rt] = num;
		return ;
	}
	int m = (l+r)>>1;
	build(lson);
	build(rson);
	push_up(rt);
}

void update1(int p, int val, int l, int r, int rt){
	if (l == r){
		sumv[rt] = val;
		maxv[rt] = val;
		return ;
	}
	int m = (l+r)>>1;
	if (p <= m)
		update1(p, val, lson);
	else
		update1(p, val, rson);
	push_up(rt);
}

void update2(int cl, int cr, int val, int l, int r, int rt){
	if (maxv[rt] < val)
		return ;
	if (l == r){
		sumv[rt] %= val;
		maxv[rt] %= val;
		return ;
	}
	int m = (l+r)>>1;
	if (cl <= m)
		update2(cl, cr, val, lson);
	if (cr > m)
		update2(cl, cr, val, rson);
	push_up(rt);
}

ll query(int ql, int qr, int l, int r, int rt){
	if (ql<=l && r<=qr)
		return sumv[rt];
	int m = (l+r)>>1;
	ll sumr = 0;
	if (ql <= m)
		sumr += query(ql, qr, lson);
	if (qr > m)
		sumr += query(ql, qr, rson);
	return sumr;
}

int main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cin >> n >> q;
	build(1, n, 1);
	int type, l, r, x;
	while (q--){
		cin >> type >> l >> r;
		if (1 == type)
			cout << query(l, r, 1, n, 1) << endl;
		else if (2 == type){
			cin >> x;
			update2(l, r, x, 1, n, 1);
		}
		else
			update1(l, r, 1, n, 1);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值