撕开黑幕!AI担任拳击比赛裁判;思维导图&工程图表工具大合辑;CVPR视觉-语言的预训练最新进展;游戏开发资源列表;前沿论文 | ShowMeAI资讯日报

介绍了一款名为DeepStrike的人工智能拳击裁判系统,该系统使用深度学习技术自动分析拳击比赛并确保公平性;此外,还探讨了一项文本生成评估基准EditEval,用于评估模型在文本编辑和改进方面的能力。

👀日报合辑 | 📆电子月刊 | 🔔公众号下载资料 | 🍩@韩信子

📢 DeepStrike:人工智能担任拳击比赛裁判

https://superinnovators.com/2022/10/ai-boxing-judge/

拳击评分容易出现人为错判、腐败或法官带有偏见的故意操纵。2016 年里约奥运会拳击锦标赛就被调查发现了贿赂的证据。丹麦初创公司 Jabbr 的机器学习工程师开发了一个名为 DeepStrike 的 AI 模型,自动分析了使用摄像头分析拳击比赛的性能。

DeepStrike 使用深度学习来衡量 50 个指标,包括出拳类型、出拳落点、质量、步法、侵略性、压力等。这项创新可用于取代拳击裁判,确保结果公平,也可以为运动员提供训练数据统计与分析,帮助提升运动员成绩。

工具&框架

🚧 『WeTextProcessing』为中文设计的文本规则化和文本反规则化工具包

https://github.com/wenet-e2e/WeTextProcessing

WeTextProcessing 是一个为中文设计的,可以把文本规则化(比如一些阿拉伯数字的日期、时间和数量转化为中文)和反规则化的工具包。

🚧 『Python Outlier Detection Thresholding (PyThresh)』 Python离群点检测阈值决策库

https://github.com/KulikDM/pythresh

PyThresh 是一个 Python 工具包,用于对单变量/多变量数据中的离群点检测分数进行阈值化。它可以与 PyOD 协同工作,具有类似的语法和数据结构,区别在于 PyThresh 是用来对离群点检测产生的分数进行阈值处理的,它不需要设置边界阈值,也无需定义异常值数量。

这个工具库下的离群点检测分数遵循这个规则:分数越高,它是数据集中的离群点的概率就越高。所有的阈值函数都返回一个二进制数组,其中 liers 和 outliers 分别用 0 和 1 表示。

PyThresh 包括 30 多种阈值处理算法。这些算法的范围从使用简单的统计分析(如Z-score)到涉及图论和拓扑学的更复杂的数学方法。

🚧 『Zshot』零样本和少样本命名实体识别与关系识别

https://github.com/IBM/zshot

https://ibm.github.io/zshot/

Zshot 是一个高度可定制的框架,用于零样本和少样本的命名实体识别。可以在指代抽取、将文本指代与维基百科中的实体联系起来等场景发挥作用。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ShowMeAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值