题目描述:
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5
The coins can form the following rows:
¤
¤ ¤
¤ ¤
Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8
The coins can form the following rows:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
Because the 4th row is incomplete, we return 3.
你总共有 n 枚硬币,你需要将它们摆成一个阶梯形状,第 k 行就必须正好有 k 枚硬币。
给定一个数字 n,找出可形成完整阶梯行的总行数。
n 是一个非负整数,并且在32位有符号整型的范围内。
示例 1:
n = 5
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤
因为第三行不完整,所以返回2.
示例 2:
n = 8
硬币可排列成以下几行:
¤
¤ ¤
¤ ¤ ¤
¤ ¤
因为第四行不完整,所以返回3.
思路:
根据数学等差数列的相关知识,阶梯的前n行,一共有枚硬币,其中
,
;
或者是有枚硬币,其中
,
;
现在有n枚硬币组成阶梯,如果前k行的硬币总数小于等于n,即;且前k+1行的硬币总数大于n,即
,则k就是我们要找的答案。
n枚硬币组成的阶梯绝对不会超过n行,我们可以二分查找k值。
实现(C++):
class Solution {
public:
int arrangeCoins(int n) {
if(n<1){
return n;
}
int begin = 0;
int end =n;
while(begin<=end){
long long mid = begin+(end-begin)/2;
long sum = mid*(mid+1)/2;
if(sum>n)
end = mid-1;
else
begin = mid+1;
}
return begin-1;
}
};