[PR 2026]Hypergraph-based semantic and topological self-supervised learning for brain disease diagno

论文网址:Hypergraph-based semantic and topological self-supervised learning for brain disease diagnosis - ScienceDirect

论文代码:https://github.com/iMoonLab/HGST

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related works

2.3.1. Self-supervised learning

2.3.2. Graph neural network

2.3.3. Hypergraph neural networks

2.4. Methods

2.4.1. The framework of HGST

2.4.2. High-order semantic-aware SSL

2.4.3. High-order topology-aware SSL

2.4.4. Brain disease diagnosis

2.5. Experiments

2.5.1. Datasets and preprocessing

2.5.2. Compared methods

2.5.3. Implement details

2.5.4. Experimental results on ADHD and MDD datasets

2.5.5. Ablation study

2.5.6. Sensitivity analysis

2.5.7. Interpretable study

2.6. Conclusion

1. 心得

(1)thu/imoon真的猛猛发超图啊,让我膜拜一下新进展

(2)2026!(误)的REST-meta-MDD和ADHD-200数据集上还是性能不咋样!(好心审稿人能不能补药再diss我70+ACC差了啊

(3)后知后觉,我以前一直以为我不喜欢写项目书orPPT,但其实我私底下很喜欢做笔记和画图...实际上是不喜欢老师一张图改一个月吧(并不是因为画的不好,而是计划有变之类的

2. 论文逐段精读

2.1. Abstract

        ①Limitations: exisitng models can not capture the high order topological/semantic feature

        ②So they proposed HyperGraph-based Semantic and Topological self-supervised learning (HGST) method to capture complex interactions

2.2. Introduction

        ①没说什么特别的,就是很正常的intro

2.3. Related works

2.3.1. Self-supervised learning

        ①Though SSL brings stronger performance on scarse data, current works only focus on 

2.3.2. Graph neural network

        ①Existing GNNs relys on simple graph structure

2.3.3. Hypergraph neural networks

        ①Most of HGNNs are verified on single dataset

2.4. Methods

2.4.1. The framework of HGST

        ①The schematic of HGST:

2.4.2. High-order semantic-aware SSL

        ①The hyperedge set is constructed by Lasso

(1)Node feature masking and encoding

        ①Hyper graph is represented by \mathcal{H}=\{\mathcal{V},\mathcal{E}\}, where \mathcal{V} denotes brain region set and \mathcal{E} is hyper edge set.

        ②The subset \overline{\mathcal{V}}\supset\mathcal{V} is marked by [MASK], so the node feature matrix can be noted by:

\widehat{\mathbf{X}}_{v}= \begin{cases} \mathbf{X}[M], & v\in\mathcal{V}, \\ \mathbf{X}_{v}, & v\notin\mathcal{V}. \end{cases}

where {\widehat{\mathbf{X}}}\in\mathbb{R}^{N\times C} 

        ③The hypergraph encoder processes node feature matrix and hyperedge index to high order semantic embedding \mathbf{C}_{v}\in\mathbb{R}^{N\times D}:

\mathbf{C}_v=\mathrm{Encoder}\left(\widehat{\mathbf{X}}_v,\mathbf{H}\right)

(2)Semantic reconstruction decoding

        ①To avoid over smooth, they define [DMASK] token for node subset \overline{\mathcal{V}}:

\widehat{\mathbf{C}}_v= \begin{cases} \mathbf{C}\left[DM\right],\quad & v\in\overline{\mathcal{V}}, \\ \mathbf{C}_v,\quad & v\not\in\overline{\mathcal{V}}. \end{cases}

where {\widehat{\mathbf{C}}}\in\mathbb{R}^{N\times D}

        ②The embedding needs decoding:

\mathbf{X}_v^\prime=\mathrm{Decoder}\left(\widehat{\mathbf{C}}_v,\mathbf{H}\right)

(3)Loss function design

        ①Reonstruction loss:

\begin{aligned} & \cos\left(\mathbf{x}_{v},\mathbf{x}_{v}^{\prime}\right)=\frac{\mathbf{x}_{v}^{\top}\mathbf{x}_{v}^{\prime}}{\|\mathbf{x}_{v}\|\|\mathbf{x}_{v}^{\prime}\|}, \\ & \mathcal{L}_{\mathrm{seman}}=\frac{1}{|\mathcal{Y}|}\sum_{v\in\mathcal{Y}}\left[1-\cos\left(x_{v},x_{v}^{\prime}\right)\right]^{\lambda_{s}},\quad\lambda_{s}\geq1. \end{aligned}

2.4.3. High-order topology-aware SSL

(1)Topology augmentation and encoding

        ①“具体来说,对于每个超边,其中的每个节点都会被随机保留或丢弃,概率为p,从而产生新的超边子集。随后,计算此子集与原始超边之间的差集,以形成增强的超边。为避免产生重复的超边(即具有相同节点组合的冗余超边),我们向这些冗余超边随机添加顶点以确保它们的唯一性。”

        ②They generate 2 enhanced hypergraph \mathcal{H}_{a}=\{\mathcal{V},\mathcal{E}_{a}\} and \mathcal{H}_{b}=\{\mathcal{V},\mathcal{E}_{b}\} with the same number of hyperedge

(2)Structural distance measurement

        ①Brain network hypergraph can be represented by \mathcal{H}=(\mathcal{V},\mu,\mathcal{E},\eta,\kappa), where \mu and \eta are probability measures, \kappa:\mathcal{V}\times\mathcal{E}\to\mathbb{R} is relationship between brain regions and functional connections

        ②Regularize the distribution of hypergraph:

\mu_{a}\left(v\right)=\frac{\deg_{\mathcal{H}_{a}}\left(v\right)}{\sum_{v\in\mathcal{Y}}\deg_{\mathcal{H}_{a}}\left(v\right)},\quad\mu_{b}\left(v\right)=\frac{\deg_{\mathcal{H}_{b}}\left(v\right)}{\sum_{v\in\mathcal{Y}}\deg_{\mathcal{H}_{b}}\left(v\right)}

        ③The structural distance between corresponding hyperedges:

d_{e,\rho}^{\mathbf{H}}=\inf_{\pi\in\Pi(\mu_{a},\mu_{b})}\int_{|\mathcal{V}|\times|\mathcal{V}|}|\kappa\left(v,e_{a}\right)-\kappa\left(v^{\prime},e_{b}\right)|\pi\left(dv\times dv^{\prime}\right)

where \pi is a coupling function between the node distributions

(3)Topology-aware contrastive learning

        ①Similarity weight of hyperedges:

\gamma_e=e^{-\lambda_t\cdot d_{H,\rho}}

where \lambda_{t} denotes hyperparameters

        ②Contrastive loss of edge pairs:

\mathcal{L}_{topol}\left(e\right)=-\gamma_{e}\cdot\log\frac{\exp(\mathbf{c}_{e}\cdot\mathbf{c}_{e^{\prime}}/\tau)}{\sum_{e^{\prime}\in E_{b}}\exp(\mathbf{c}_{e}\cdot\mathbf{c}_{e^{\prime}}/\tau)}

where \tau denotes the temperature parameter controlling the sparsity of the contrastive learning distribution

2.4.4. Brain disease diagnosis

        ①Total loss:

\mathcal{L}=\mathcal{L}_{topol}+\alpha\mathcal{L}_{seman}

        ②Readout and classification:

\mathbf{Y}=\mathrm{MLP}\left(\mathrm{concat}\left(\mathbf{C}_1,\mathbf{C}_2,\ldots,\mathbf{C}_N\right)\right)

        ③Algorithm of HGST:

2.5. Experiments

2.5.1. Datasets and preprocessing

        ①Datasets: ADHD-200 with 362 ADHD and 585 NC and REST-meta-MDD with 1300 MD and 1128 NC

2.5.2. Compared methods

        ①不赘述

2.5.3. Implement details

        ①Hidden dim of hypergraph: 512

        ②Learning rate in pre-training stage: 0.001

        ③Max epoch number: 150

        ④Optimizer: Adam 

        ⑤Mask rate: 0.5

        ⑥Data enhancement parameter: 0.5

        ⑦The hyperedge construction parameter of sparse representation: 0.2

2.5.4. Experimental results on ADHD and MDD datasets

        ①Performance on ADHD:

        ②Performance on MDD:

2.5.5. Ablation study

        ①Module ablation on ADHD-200:

        ②Module ablation on MDD:

2.5.6. Sensitivity analysis

        ①Sensitivity of hyper-parameters:

2.5.7. Interpretable study

        ①Significant connections:

2.6. Conclusion

        ~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值