[ICML 2025]MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from

论文网址:[2502.05034] MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data

论文代码:https://github.com/Da1yuqin/MindAligner

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related Work

2.3.1. fMRI-Based Brain Decoding

2.3.2. Cross-Subject Functional Alignment

2.4. Preliminary

2.5. MindAligner

2.5.1. Overview

2.5.2. Brain Transfer Matrix

2.5.3. Brain Functional Alignment Module

2.5.4. Inference

2.6. Experiments

2.6.1. Implementation Details

2.6.2. Dataset

2.6.3. Metrics

2.6.4. fMRI-based Visual Decoding

2.6.5. Brain Functional Alignment Analysis

2.7. Conclusion

1. 心得

(1)好多做跨被试的啊...

(2)这写作风格???黑人问号脸?(不是说好或者坏我只是(觉得很独特

2. 论文逐段精读

2.1. Abstract

        ①Limitation: model is designed for single subject 

        ②Thus, they proposed cross-subject MindAligner

2.2. Introduction

        ①Limitations of alignment in cross-subject model: scarce data in shared space construction, and subject respond differently in watching the same image

        ②Conception of MindAligner:

2.3. Related Work

2.3.1. fMRI-Based Brain Decoding

        ①Lists traditional methods and point out their work might be inefficient in cross subject reconstruction

2.3.2. Cross-Subject Functional Alignment

        ①Align limits inter subject specificity

2.4. Preliminary

        ①Only use one hour of data to pretrain, then test model in shared test set

2.5. MindAligner

2.5.1. Overview

        ①The overall framework of MindAligner:

2.5.2. Brain Transfer Matrix

        ①Given the the fMRI signal \mathcal{F}_{N} for a subject S_N, the brain transfer matrix (BTM) maps it to:

\hat{\mathcal{F}_K}=\mathcal{M}\times\mathcal{F}_N

        ②The \mathcal{M} can be decomposed to two low-rank matrices:

\mathcal{M}=\mathcal{A}\times\mathcal{B}

where \mathcal{A}\in\mathbb{R}^{n\times h} and \mathcal{B}\in\mathbb{R}^{h\times k}n and k denotes the fMRI voxel dimensions of unkown and kown subjects, h is the hidden dimension

2.5.3. Brain Functional Alignment Module

        ①Generate the stimuli embedding z_K of unkown subject by stimuli differential condition to align kown embedding \mathcal{F}_N:

z_{N}=\mathcal{A}\times\mathcal{F}_{N}

\begin{aligned} & E_{\mathrm{diff}}=\mathcal{E}_{image}(\mathcal{I}_{N})-\mathcal{E}_{image}(\mathcal{I}_{K}), \\ & z_{\mathrm{diff}}=E_\mathrm{diff}\times\mathcal{M}_\mathrm{diff}, \\ & \boldsymbol{z}_{K}=\mathcal{M}_{C}(z_{N},z_{\mathrm{diff}}), \end{aligned}

where \mathcal{E}_{image} is pretrained CLIP, as the image encoder. \mathcal{M}_{C} is the cross-stimulus neural mapper, 它使用\mathcal{M}_{\mathrm{diff}}\in\mathbb{R}^{a\times2h}将条件z_{\mathrm{diff}}分解为缩放和移位参数??

        ②Further align by:

\hat{\mathcal{F}}_{K}=z_{K}\times\mathcal{B}.

        ③Reconstruction loss:

\mathcal{L}_{rec}=||\mathcal{F}_{K}-\mathcal{F}_{K}||_{2}^{2}

and distribution loss:

\mathcal{L}_{KL}=\mathcal{KL}(\mathcal{F}_{K},\mathcal{F}_{K})

        ④Loss between fMRI embedding pairs and stimuli pairs:

\mathcal{L}_{latent}=\|(\mathcal{R}(\mathcal{E}_{f}(\boldsymbol{z}_{N}),\mathcal{E}_{f}(\boldsymbol{z}_{K}))-\mathcal{R}(\boldsymbol{E}_{N},\boldsymbol{E}_{K})\|_{2}^{2}

where E_N and E_K are the image embeddings from CLIP, \mathcal{R}(\cdot) denotes dissimilarity function

        ⑤The final loss:

\mathcal{L}_{\mathrm{Align}}=\mathcal{L}_{Dec}+\alpha_{rec}\mathcal{L}_{rec}+\alpha_{KL}\mathcal{L}_{KL}+\alpha_{la}\mathcal{L}_{latent},

where \mathcal{L}_{Dec} denotes the decoding loss in the baseline method

2.5.4. Inference

        ①BTM only

2.6. Experiments

2.6.1. Implementation Details

        ①BTM: consist of 2 linear layers with hidden dim of 4096

        ②Dimension of \mathcal{M}_\mathrm{diff}: 768

        ③Input and output dimension of functional embedder: 4096

        ④Loss coefficients: \alpha_{rec}=1,\alpha_{la}=\alpha_{KL}=0.001,\alpha_{1}=0.033,\alpha_{2}=0.016

        ⑤Learning rate: 1e-5

        ⑥Batch size: 16

2.6.2. Dataset

        ①Dataset: NSD

2.6.3. Metrics

        ①Lists metrics for performance and functional alignment measurement

2.6.4. fMRI-based Visual Decoding

        ①Visualization of reconstructed image:

        ②Quantitative performance:

        ③Loss ablation:

        ④Ablation of alignment:

        ⑤Parameter comparison:

2.6.5. Brain Functional Alignment Analysis

         ①Visualization transfer quantity in brain:

they define that early visualization region presents lower inter-subject variability, and higher visual regions (including OPA, FFA, PPA, and EBA) show larger variability

        ②Performance of different alignment:

        ③Transfer quantity in one hour:

2.7. Conclusion

        ~

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值