[论文精读]A New Brain Network Construction Paradigm for Brain Disorder Via Diffusion-Based Graph Contra-

论文全名:A New Brain Network Construction Paradigm for Brain Disorder Via Diffusion-Based Graph Contrastive Learning

论文网址:A New Brain Network Construction Paradigm for Brain Disorder Via Diffusion-Based Graph Contrastive Learning | IEEE Journals & Magazine | IEEE Xplore

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Related work

2.3.1. Brain network analysis methods

2.3.2. Graph neural network methods

2.3.3. Deep learning methods

2.4. Methodology

2.4.1. Brain Region-Aware Module

2.4.2. Brain Network Optimization Module

2.4.3. Classifier Design and Model Training

2.5. Experiments

2.5.1. Datasets and Preprocessing

2.5.2. Experiment Settings

2.5.3. Ablation Study and Analysis

2.6. Discussion

2.6.1. Compasirons with Baseline

2.6.2. The optimized Brain Networks

2.6.3. Detection of disease-related brain regions

2.7. Conclusion

3. Reference


1. 心得

(1)...和损失函数合集没什么区别,看主图就能看出来用了五个损失函数...全篇基本都是在讲损失函数,厌损失函数的人可以先走了

(2)很难得见到主比较表是个图的...准确来说是图表...好吧,虽然也有,但不多。而且甚至放在了消融实验后面

(3)感觉很多技术甚至都只是提了一嘴,也没画得很清楚,公式啥的都没有。对于没接触过diffusion的人完全不知道在扩散什么,而且不止一种扩散方法吧?

(4)实验很多,都是医学的。但是性能什么的,完全没和什么SOTA比较吧

2. 论文逐段精读

2.1. Abstract

        ①Existing limitations on brain network analysis: users dependency, non-repeatable nature, time costing

        ②They proposed DGCL with brain region-aware module (BRAM)

        ③Datasets: ADNI and ABIDE

2.2. Introduction

        ①Diffusion tensor imaging (DTI) presents the structure of brain by direction of white matter fiber bundles

        ②Existing problems: parameters dependency of software processing, overly group oriented brain network construction, inaccurate software processing

        ③⭐The method they proposed replaced the data preprocessing process

2.3. Related work

2.3.1. Brain network analysis methods

        ①Introduced the datasets used, commonly used imaging modalities for constructing brain networks, and the earliest methods for constructing brain networks

2.3.2. Graph neural network methods

        ①Listing GNNs methods and claiming that they heavily rely on data preprocessing

2.3.3. Deep learning methods

        ①Listed methods for automatically learning brain network features, processing preprocessing steps, etc

2.4. Methodology

        ①Overall framework:

2.4.1. Brain Region-Aware Module

(1)Brain region feature extraction and alignment

        ①Brain atlas: AAL, and align to the standard regions:

\psi^*=\arg\min_\psi\mathcal{L}_{sim}(f,m\circ\psi)+\mathcal{L}_{reg}(\psi)

where \psi^* is the best registration field, m denotes the moving image, \mathcal{L}_{sim} denotes the similarity function, \mathcal{L}_{reg} denotes the regularization penalty for the registration field

(2)The structure of proposed BRAM

        ①They employed Trilinear interpolation in 3D DTI registration on moving image m:

m'=m\circ\psi

        ②"The final output of the first stage model is:"(啊???为什么这里不做介绍啊?denoising dual U-Net and deformation network为什么也没展开介绍呢?

M_i= m'\cdot \text{mask}(region_i)

deformation  n.变形;畸形;残废;变丑;破相;损形

(3)Reverse alignment process

        ①They aim to learn a conditional score function of the deformation between moving image m and fixed reference image f:

c=\left ( m,f \right )

        ②The fixed image can be regard to a target: x_0=f

        ③Loss function of diffusion network:

\mathcal{L}_{\mathrm{diffusion}}\left(c,x_{t},t\right)=\mathbb{E}_{\epsilon,x_{t},t}\left\|D_{\theta}\left(c,x_{t},t\right)-\epsilon\right\|_{2}^{2}

where D_{\theta } is the diffusion network

        ④Optimization objective of diffusion model:

\min_{D_\theta,M_\psi}\mathcal{L}_\text{diffusion }(c,x_t,t)+\lambda\mathcal{L}_\text{regist }(m,f)

where \mathcal{L}_\text{regist } denotes registration loss, \mathcal{L}_\text{regist } contains \mathcal{L}_\text{sim} and \mathcal{L}_\text{smoo}M denotes input moving images, F denotes input reference images

        ⑤Optimization objective of registration model:

\psi=\arg\min\mathcal{L}_{sim} (F,M\circ\psi)+\mu\mathcal{L}_{\mathrm{smoo}} (\psi)

where \mathcal{L}_{sim} denotes the image structure similarity loss, \mathcal{L}_{smoo} denotes the smoothness constraint on the gradient of the deformation field

        ⑥Aligned image generation algorithm:

2.4.2. Brain Network Optimization Module

        ①The workflow of reconstructing the embedding features of brain network nodes:

        ②Generating diffusion map by thermonuclear features:

S^\text{heat}=\exp\left(tAD^{-1}-t\right)

where t denotes the diffusion time, and it slightly aggregates neighbor nodes

        ③Loss of constrastive learning:

\mathcal{L}_{\mathrm{cont}}=\max_{\theta,\omega,\phi,\psi}\frac{1}{|\mathcal{G}|}\sum_{g\in G}\sum_{i=1}^{|g|}\Big[\mathrm{MI}(h_{i}^{\alpha},h_{g}^{\beta})+\mathrm{MI}(h_{i}^{\beta},h_{g}^{\alpha})\Big]

where MI denotes the mutual information function (这里对应图中间两个蓝框框,是图嵌入和节点嵌入都要算点积的)

        ④Normalizating embedding matrix by inner product and constraining them to 0-1 by activation function(这个在图里又没有了....要回到最初大图才有):

\mathcal{L}_{\mathrm{ref}}\left(\mathcal{G}\right)=-\frac{1}{90\times90}\sum_{i,j}(A_{p}[i,j]-A_{\mathrm{ref}}[i,j])^{2}

where A_{p}[i,j]=\sigma (h_{i}^{\top}h_{j})

2.4.3. Classifier Design and Model Training

        ①Classifier: consist of 3-layer MLP, 2 ReLU, and Softmax with 4 neurons

        ②Multiclassification loss:

\mathcal{L}_{\mathrm{cls}}\left(p\right)=-\sum_{i=0}^{C-1}y_i\log(p_i)+(1-y_i)\log(1-p_i)

        ③The total loss of DGCL:

\mathcal{L}_{total}=\mathcal{L}_{\mathrm{cont}}+\mathcal{L}_{\mathrm{cls}}\left(p\right)+\alpha\mathcal{L}_{\mathrm{ref}\left(\mathcal{G}\right)}

        ④Training process:

2.5. Experiments

2.5.1. Datasets and Preprocessing

(1)AD

        ①Dataset: ADNI

        ②Modality: DTI

        ③Classes: normal control group (NC), early mild cognitive impairment (EMCI), late mild cognitive impairment (LMCI), and AD

        ④Statistic information:

(2)ASD

        ①Datasets: San Diego University, NYU Langone Medical Center, and Trinity Centre for Health Sciences State

        ②Statistic information(作者标号写错了,这是table 2):

(3)Preprocessing

        ①Tool: PANDA, to get reference structural brain network matrix

        ②Preprocessing steps: "converting the initial DICOM format of the data to NIFTI format, skull stripping, fiber bundle resampling, and head motion correction. Then we calculate the fractional anisotropy (FA) coefficients by fitting the tensor model using the least squares method, and output the DTI data. After resampling, all subjects have 91×109×91 voxels in DTI, with a voxel size of 2mm × 2mm × 2mm."(所以并没有完全取代好吧!?有什么用!!就只是帮助register是吧

        ③Then register the image to get structural connectivity \hat{A}

        ④Atlas: AAL 90

2.5.2. Experiment Settings

        ①Optimizer: Adam

        ②Initial learning rate: 0.0001 with weight decay(没说咋decay)

        ③Epoch: 300

        ④Batch size: 16

        ⑤Cross validation: 5 fold, 4 for training and 1 for testing

        ⑥Metrics: ACC, SEN, SPE and AUROC

        ⑦Initialization scheme of parameters: Xavier

2.5.3. Ablation Study and Analysis

(1)Hyperparameters Analysis

        ①Ablation of loss coefficient \lambda of the alignment network and constraint coefficient \mu of the smoothness of the deformation field gradient(作者说\lambda =2是原论文的最优值,因此他们也选2了,只调试\mu):

        ②Ablation study of coefficient \alpha of the reference brain network:

        ③Visualization under different \alpha:

        ④Module ablation:

(2)Loss functions Analysis

        ①Loss ablation:

2.6. Discussion

2.6.1. Compasirons with Baseline

        ①Comparison on AD(就比这俩?SOTA呢):

        ②Comparison on ASD:

        ③t-SNE visualization on ADNI and ABIDE:

        ④"comprehensive comparison"(????我也没见得有多综合):

2.6.2. The optimized Brain Networks

        ①Four binary classification on ADNI:

       ②The changes in brain connectivity from NC to EMCI, LMCI, and AD:

        ③Connection strength on different stages of AD:

        ④Connectivity difference between HC and ASD:

where these matrices are obtained by averaging weight scores on correctly classified test data(加权是咋加?

2.6.3. Detection of disease-related brain regions

        ①The calculation method of degree centrality:

C_{deg}\left(v_i\right)=\frac{\sum_jA[i,j]}{\sum_j\mathbf{1}(A[i,j]>0)}

        ②AD related ROIs indentified by PANDA, DGCL and overlap region:

        ③Specific important regins:

        ④8 subnetwork mask ablation on ABIDE:

        ⑤The top 5 important regions of ASD:

2.7. Conclusion

        ①They aim to expand this work to other disease

        ②Limitations of their work: do not reveal the pathogenesis, small sample size

3. Reference

Zong, Y. et al. (2024) 'A New Brain Network Construction Paradigm for Brain Disorder Via Diffusion-Based Graph Contrastive Learning', IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-16. doi:  10.1109/TPAMI.2024.3442811

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值