[综述笔记]A Survey of Graph Meets Large Language Model: Progress and Future Directions

论文网址:A Survey of Graph Meets Large Language Model: Progress and Future Directions | IJCAI

相关论文/收录论文:GitHub - yhLeeee/Awesome-LLMs-in-Graph-tasks: A curated collection of research papers exploring the utilization of LLMs for graph-related tasks.

英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用

目录

1. 心得

2. 论文逐段精读

2.1. Abstract

2.2. Introduction

2.3. Preliminary

2.3.1. Graph Neural Networks

2.3.2. Large Language Models

2.3.3.Proposed Taxonomy

2.4. LLM as Enhancer

2.4.1. Explanation-based Enhancement

2.4.2. Embedding-based Enhancement

2.4.3. Discussions

2.5. LLM as Predictor

2.5.1. Flatten-based Prediction

2.5.2. GNN-based Prediction

2.5.3. Discussions

2.6. GNN-LLM Alignment

2.6.1. Symmetric

2.6.2. Asymmetric

2.6.3. Discussions

2.7. Future Directions

2.8. Conclusion

3. 知识补充

3.1. Frozen and tuning in LLMs

3.2. Superpixel graph

3.3. Agent

4. Reference


1. 心得

(1)oops~我第一次读会议的综述呢~好爽啊这种感觉,篇幅可以很短~~

(2)整篇文章写得像个大型思维导图

(3)也可能是篇幅限制,感觉介绍了很多很多很多模型但是都是文字介绍...虽然是没有办法啦,只是读者读起来还是比较...太多字了!不过每个大类下面都有图和公式,看那些还是比较可观的

(4)需要具体模型的得去原文取,原文介绍了无数个模型我这就不能赘述了

2. 论文逐段精读

2.1. Abstract

        ①They proposed a taxonomy: regard LLM in graph as a) enhancer, b) predictor, c) alignment component

taxonomy  n. 分类学;分类法

2.2. Introduction

        ①First para: introducing GNNs first

        ②The second para: reviewing LLMs

        ③Third: the combination of graph and LLM:

        ④The overall taxonomy table:

        ⑤Lists the contributions of related LLM+graph survey and their limitations

        ⑥Their contributions: a) taxonomy, b) review, c) future directions

granularity  n. 间隔尺寸,[岩] 粒度

2.3. Preliminary

2.3.1. Graph Neural Networks

(1)Definitions

        ①The message passing mechanism of GNN:

h_i^{(l)}=\mathbf{U}\left ( h_i^{(l-1)},\mathbf{M}\left ( \left \{ h_i^{(l-1)},h_j^{(l-1)}|v_j \in \mathcal{N}_i \right \} \right ) \right )

where h_i^{(l)} denotes feature vector of node i in the l-th layer, \mathcal{N}_i is the neighbors of node i\mathbf{M} is message passing function, \mathbf{U} is the updating function

(2)Graph pre-training and prompting

        ①Limitation of GNN: annotations needing and weak generalization, slightly resolved by graph pretraining

        ②Categorize graph methods to contrastive and generative way, and list models respectively

pertain  vi.适用;存在

2.3.2. Large Language Models

(1)Definitions

        ①Difference between LLMs and pre-trained language models (PLMs): LLMs: huge language models (i.e., billion-level) that undergo pre-training on a significant amount of data; PLMs: early pre-trained models with moderate parameter sizes (i.e., million-level), which can be easily further fine-tuned on task-specific data to achieve better results to downstream tasks

(2)Evolution

        ①Categories of LLMs: non-autoregressive and autoregressive

        ②Non-autoregressive LLMs: focus on natural language understanding and take masked language modeling as pretraining task

        ③Autoregressive LLMs: take next token prediction as task

2.3.3.Proposed Taxonomy

        ①Introducing their fig.2 (my second graph)

2.4. LLM as Enhancer

        ①The 2 methods of LLM as enhancer:

2.4.1. Explanation-based Enhancement

        ①When LLMs are used for enhancing explanation, they can be explanations, knowledge entities, and pseudo labels

        ②Typical pipeline:

where t_i denotes the text attributes, p denotes the designed textual prompts, e_i denotes the additional textural output, \mathbf{x}_i \in \mathbb{R}^{D} and \mathbf{X} \in \mathbb{R}^{N \times D} is the enhanced node embedding of node iD denotes dimension, \mathbf{A}\in \mathbb{R}^{N \times N} is adjacency matrix, \mathbf{H} \in \mathbb{R}^{N \times d} is the node attributes aggregated by GNN, d is the aggregated dimension

2.4.2. Embedding-based Enhancement

        ①This methods directly generate node attributes for graph:

⭐this method requires embedding-visible or open-source LLMs cuz fine-tune needed

2.4.3. Discussions

        ①The performance may be superior bur the cost, emm... still needs to be optimized

2.5. LLM as Predictor

        ①The category is based on whether employing GNNs to extract structural features for LLMs

        ②Graph information cannot be directly output as series

        ③Two categories:

2.5.1. Flatten-based Prediction

        ①This method transforms graph to sequence of nodes or tokens G_{seq} and parses them:

where \mathcal{V} is node set, \mathcal{E} is edge set, \mathcal{T} denotes node text attributes set, \mathcal{J} is edge text attributes, p represents the instruction prompt, \tilde{Y} is the redicted label

parse  v.对(句子或句子中的词)作语法分析,作句法分析;<计>对…进行语法分析;语法(或句法)上可成立  n.<计>语法分析,语法分析结果

        ②They further categories this method to frozen and tuning

2.5.2. GNN-based Prediction

        ①The method of combination of GNN and LLM:

2.5.3. Discussions

        ①Advantages of LLMs in GNN: increase the performance on zero-shot prediction

        ②Problems of flatten: cannot capture long range information by limit hops

2.6. GNN-LLM Alignment

        ①Alignment achieves the fusion of GNN and LLM

        ②Visualization of this method:

2.6.1. Symmetric

        ①Approach: encoding graph and text respectively

        ②Limitation: lack of interaction between text and graph

        ③Solution: some researchers employ contrastive learning for alignment:

\ell(\mathbf{g}_{i},\mathbf{t}_{i})=-\log\frac{e^{s(\mathbf{g}_{i},\mathbf{t}_{i})/\tau}}{\sum_{k=1}^{|\mathcal{G}|}e^{s(\mathbf{g}_{i},\mathbf{t}_{k})/\tau}},\\\mathcal{L}_{\mathrm{InfoNCE}}=\frac{1}{2|\mathcal{G}|}\sum_{i=1}^{|\mathcal{G}|}\Big(\ell(\mathbf{g}_{i},\mathbf{t}_{i})+\ell(\mathbf{t}_{i},\mathbf{g}_{i})\Big),

where \mathbf{g} is the representation of a graph with its corresponding text \mathbf{t}s\left ( \cdot ,\cdot \right ) denotes the score function that assigns high values to the positive pair, and low values to negative pairs, \tau denotes temperature parameter, \left | \mathcal{G} \right | is the number of graphs for training

        ④Another way: as (b), two models iterate interactively

2.6.2. Asymmetric

        ①Definition: one method in it is to assist another

        ②Two approaches: graph-nested transformer and graph aware distillation

2.6.3. Discussions

        ①Data scarsity might heavily influence alignment technique

2.7. Future Directions

        ①Summarized models:

        ②Dealing with non-TAG: some nodes lack of text attributes and are hard to describe

        ③Dealing with data leakage: LLMs might have learnt some... data...before...6

        ④Improving transferability: the heterogeneity of graph attributes makes it more difficult for models to be transferred

        ⑤Improving expainability: further explorations needing

        ⑥Improving efficiency: time and space cost

        ⑦Analysis and improvement of expressive ability: graph structure is hard to understand, namely, ut is difficult for LLMs to distinguish between isomorphic and heterogeneous graphs

        ⑧LLMs as agent: LLMs can be regarded as agent in different fields

2.8. Conclusion

        ~

3. 知识补充

3.1. Frozen and tuning in LLMs

(1)Frozen(冻结):这指的是模型的参数在训练后不再更新或调整。在这种状态下,模型被视为固定的,只用于推理或生成文本,而不会再进行进一步的训练。冻结模型通常用来确保其原始性能不受后续操作的影响。

(2)Tuning(微调):这指的是对已训练模型进行进一步的训练,以适应特定任务或数据集。微调通常涉及调整模型的一部分参数,以提高其在特定应用场景中的表现。例如,可以在一个大型通用模型上微调,以使其更好地理解某一领域的语言或风格。

3.2. Superpixel graph

(1)Example:

(2)Related article: Superpixel Image Classification with Graph Attention Networks | IEEE Conference Publication | IEEE Xplore

(3)来自外行的我的评价:这什么玩意儿?极大目标分类???有必要吗

3.3. Agent

(1)定义:在深度学习中,"agent" 通常指的是在某个环境中进行决策和行动的智能体。它可以通过与环境互动来学习最佳策略,以达到特定目标。

(2)例子:例如,在强化学习中,一个游戏中的角色可以被视为一个 agent。它通过观察游戏状态(如位置、敌人等),采取行动(如移动、攻击),并根据获得的奖励(如得分或生命值变化)来学习如何更好地完成游戏目标。这样的 agent 在不断尝试和错误中优化其策略,从而提高表现。

4. Reference

Li, Y. et al. (2024) 'A Survey of Graph Meets Large Language Model: Progress and Future Directions', IJCAI survey track, pp. 8123-8131. doi: A Survey of Graph Meets Large Language Model: Progress and Future Directions | IJCAI

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值