L - Charm Bracelet POJ - 3624

本文介绍了一个经典的01背包问题,通过示例讲解了如何利用动态规划算法来解决该问题,包括输入输出样例及核心代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Bessie has gone to the mall's jewelry store and spies a charm bracelet. Of course, she'd like to fill it with the best charms possible from the N (1 ≤ N ≤ 3,402) available charms. Each charm i in the supplied list has a weight Wi (1 ≤ Wi ≤ 400), a 'desirability' factor Di (1 ≤ Di ≤ 100), and can be used at most once. Bessie can only support a charm bracelet whose weight is no more than M (1 ≤ M ≤ 12,880).

Given that weight limit as a constraint and a list of the charms with their weights and desirability rating, deduce the maximum possible sum of ratings.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes charm i with two space-separated integers: Wi and Di

Output

* Line 1: A single integer that is the greatest sum of charm desirabilities that can be achieved given the weight constraints

Sample Input
4 6
1 4
2 6
3 12
2 7
Sample Output
23

题意:给n种物品的体积和价值,在V体积下所能装的最大价值是多少,01背包简单问题。

#include<stdio.h>
#include<string.h>
int Max(int x,int y)
{
	if(x>y)
		return x;
	return y;
}
int main()
{
	int i,j,k,m,n,v;
	int f[5000],w[5000];
	int c[15000]; 
	while(scanf("%d%d",&m,&v)!=EOF)
	{
		memset(c,0,sizeof(c));
		memset(f,0,sizeof(f));
		memset(w,0,sizeof(w)); 
		for(i=1;i<=m;i++)
			scanf("%d%d",&f[i],&w[i]);
		
		for(i=1;i<=m;i++)
		{
			for(j=v;j>=f[i];j--)
			{
				c[j]=Max(c[j],c[j-f[i]]+w[i]);//动态方程,对于每个体积状态下判断当前体积上能否到最大价值
			}
		}
		printf("%d\n",c[v]);
	}
	return 0;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值