[work]Cannot convert a partially converted tensor in TensorFlow

本文介绍如何在使用KerasTensor操作时处理第一维度为未知的情况,通过添加额外维度来适应不同大小的批次,并利用TensorFlow的truncated_normal函数为输入张量生成截断正态分布噪声。

Keras Tensor 操作的时候,第一维度是“?”,所以特殊处理,让其batchsize可变


You just need to feed it in as a single example but in the batched shape. So that means adding an extra dimension to the shape e.g.

batch_size = 32 # set this to the actual size of your batch
tf.truncated_normal((batch_size, 784), mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

This way it will "fit" into the placeholder.

If you expect batch_size to change you can also use:

tf.truncated_normal(tf.shape(input_tensor), mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None)

Where input_tensor could be a placeholder or just whatever tensor is going to have this noise added to it.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值