Problem
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than
O(n2)
. - There is only one duplicate number in the array, but it could be repeated more than once.
Solution
第一种解法,把它看成一个linked list , 当前index所对应的数值就是下一个要找位置的index。
简化成另外一个题目
142 Linked List Cycle II
class Solution {
public:
int findDuplicate(vector<int>& nums) {
const int N = nums.size();
if(N < 2) return -1;
int slow = 0, fast = 0;
while(true) {
slow = nums[slow];
fast = nums[nums[fast]];
if(slow == fast) {
break;
}
}
int finder = 0;
while(true) {
finder = nums[finder];
slow = nums[slow];
if(slow == finder) return slow;
}
}
};
第二种解法,用 binary search 的思想,每次去一半
public static int findDuplicate(int[] nums) {
if (nums.length == 0 || nums == null)
return 0;
int low = 1, high = nums.length - 1, mid;
while (low < high) {
mid = low + (high - low) / 2;
int count = 0;
for (int i = 0; i < nums.length; i++) {
if (nums[i] <= mid)
count++;
}
if (count > mid)
high = mid;
else
low = mid + 1;
}
return low;
}