Problem
Given a binary search tree, write a function kthSmallest
to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Hint:
- Try to utilize the property of a BST.
- What if you could modify the BST node's structure?
- The optimal runtime complexity is O(height of BST).
Credits:
Special thanks to @ts for adding this problem and creating all test cases.
Solution
in order 遍历二叉树,
如果节点为空就直接返回,否则先遍历完左边,更新走过的个数 K,之后比较K是否想要的。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
void helper( TreeNode* root, int& k, int& rst){
if(!root) return;
helper(root->left, k, rst);
k--;
if( k == 0){
rst = root->val;
return;
}
helper(root->right, k, rst);
}
public:
int kthSmallest(TreeNode* root, int k) {
int rst;
helper(root, k, rst);
return rst;
}
};
Follow - up
那就给每个树节点增加一个值:左边节点的个数(numLeftCount).
if ( k == numLeftCount + 1) return;
if(k < numLeftCount + 1)
go left;
else
k -= (numLeftCount + 1);
go right;