【深度学习】汇聚层

汇聚层

通常当我们处理图像时,我们希望逐渐降低隐藏表示的空间分辨率、聚集信息,这样随着我们在神经网络中层叠的上升,每个神经元对其敏感的感受野(输入)就越大。

而我们的机器学习任务通常会跟全局图像的问题有关(例如,“图像是否包含一只猫呢?”),所以我们最后一层的神经元应该对整个输入的全局敏感。通过逐渐聚合信息,生成越来越粗糙的映射,最终实现学习全局表示的目标,同时将卷积图层的所有优势保留在中间层。

此外,当检测较底层的特征时,我们通常希望这些特征保持某种程度上的平移不变性。例如,如果我们拍摄黑白之间轮廓清晰的图像X,并将整个图像向右移动一个像素,即Z[i, j] = X[i, j + 1],则新图像Z的输出可能大不相同。而在现实中,随着拍摄角度的移动,任何物体几乎不可能发生在同一像素上。即使用三脚架拍摄一个静止的物体,由于快门的移动而引起的相机振动,可能会使所有物体左右移动一个像素(除了高端相机配备了特殊功能来解决这个问题)。

本节将介绍汇聚(pooling)层,它具有双重目的**:降低卷积层对位置的敏感性,同时降低对空间降采样表示的敏感性。**

最大汇聚层和平均汇聚层

与卷积层类似,汇聚层运算符由一个固定形状的窗口组成,该窗口根据其步幅大小在输入的所有区域上滑动,为固定形状窗口(有时称为汇聚窗口)遍历的每个位置计算一个输出。

然而,不同于卷积层中的输入与卷积核之间的互相关计算,汇聚层不包含参数。

相反,池运算是确定性的,我们通常计算汇聚窗口中所有元素的最大值或平均值。这些操作分别称为最大汇聚层(maximum pooling)和平均汇聚层(average pooling)。

在这两种情况下,与互相关运算符一样,汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。

在这里插入图片描述

上图中的输出张量的高度为 2 2 2,宽度为 2 2 2。这四个元素为每个汇聚窗口中的最大值:

max ⁡ ( 0 , 1 , 3 , 4 ) = 4 , max ⁡ ( 1 , 2 , 4 , 5 ) = 5 , max ⁡ ( 3 , 4 , 6 , 7 ) = 7 , max ⁡ ( 4 , 5 , 7 , 8 ) = 8. \max(0, 1, 3, 4)=4,\\ \max(1, 2, 4, 5)=5,\\ \max(3, 4, 6, 7)=7,\\ \max(4, 5, 7, 8)=8.\\ max(0,1,3,4)=4,max(1,2,4,5)=5,max(3,4,6,7)=7,max(4,5,7,8)=8.

汇聚窗口形状为 p × q p \times q p×q的汇聚层称为 p × q p \times q p×q汇聚层,汇聚操作称为 p × q p \times q p×q汇聚。

回到本节开头提到的对象边缘检测示例,现在我们将使用卷积层的输出作为 2 × 2 2\times 2 2×2最大汇聚的输入。
设置卷积层输入为X,汇聚层输出为Y。无论X[i, j]X[i, j + 1]的值相同与否,或X[i, j + 1]X[i, j + 2]的值相同与否,汇聚层始终输出Y[i, j] = 1
也就是说,使用 2 × 2 2\times 2 2×2最大汇聚层,即使在高度或宽度上移动一个元素,卷积层仍然可以识别到模式。

在下面的代码中的pool2d函数,我们(实现汇聚层的前向传播)。然而,这里我们没有卷积核,输出为输入中每个区域的最大值或平均值。

import torch
from torch import nn
from d2l import torch as d2l
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

我们可以构建上图中的输入张量X,[验证二维最大汇聚层的输出]。

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))

在这里插入图片描述
此外,我们还可以(验证平均汇聚层)。
在这里插入图片描述

[填充和步幅]

与卷积层一样,汇聚层也可以改变输出形状。和以前一样,我们可以通过填充和步幅以获得所需的输出形状
下面,我们用深度学习框架中内置的二维最大汇聚层,来演示汇聚层中填充和步幅的使用。

我们首先构造了一个输入张量X,它有四个维度,其中样本数和通道数都是1。

X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
X

在这里插入图片描述
默认情况下,(深度学习框架中的步幅与汇聚窗口的大小相同)。因此,如果我们使用形状为(3, 3)的汇聚窗口,那么默认情况下,我们得到的步幅形状为(3, 3)

pool2d = nn.MaxPool2d(3)
pool2d(X)

在这里插入图片描述
[填充和步幅可以手动设定]。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

在这里插入图片描述
当然,我们可以(设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽度)。

pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)

在这里插入图片描述

多个通道

在处理多通道输入数据时,[汇聚层在每个输入通道上单独运算],而不是像卷积层一样在通道上对输入进行汇总。
这意味着汇聚层的输出通道数与输入通道数相同。
下面,我们将在通道维度上连结张量XX + 1,以构建具有2个通道的输入。

X = torch.cat((X, X + 1), 1)
X

将张量 X 和 X + 1 沿着第 1 个维度(索引从 0 开始,这里是列方向)进行拼接,然后将拼接后的结果重新赋值给 X。

在这里插入图片描述
如下所示,汇聚后输出通道的数量仍然是2。

pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值