Radar Installation(贪心)

本文介绍了一种解决雷达安装问题的优化算法,旨在寻找覆盖所有岛屿所需的最少雷达数量。通过计算每个岛屿与海岸线雷达的最大距离,形成覆盖区间的概念,并采用区间合并策略,实现了雷达数量的最小化。

Radar Installation

总时间限制: 

1000ms

 

内存限制: 

65536kB

描述

Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.


Figure A Sample Input of Radar Installations

输入

The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros

输出

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

样例输入

3 2
1 2
-3 1
2 1

1 2
0 2

0 0

样例输出

Case 1: 2
Case 2: 1

1.思路:

    给出一个点,然后根据半径找到这个点左右区间。计算出所有的区间,然后将所有的区间按照起始点递增的顺序排序,最后将区间合并处理。

    1.1如果后一个的左区间大于前一个的右区间,雷达数++,更新区间为当前区间

    1.2如果后一个的右区间小于前一个的右区间,更新右区间即可,因为可以覆盖。

2.为什么以左区间为临界点???(正如下面图片中所显示,第四条线段的起点并不能覆盖前三条,所以应该在第三条的起点处放置雷达。这也就是,为什么用左端点排序的原因)

   

 

#include<iostream>
#include<algorithm>
#include<map>
#include<string>
#include<vector>
#include<cmath>
using namespace std;
struct node
{
	double zuo,you;
	bool operator<(const node &no)const
	{
		return zuo<no.zuo;
	}
}no[1006];

int main()
{
	int n;
	double r;
	int cnt=0;
	while(scanf("%d %lf",&n,&r)!=EOF)
	{
		cnt++;
		int fz=0;
		if(n==0||r==0) break;
		for(int i=0;i<n;i++)
		{
			double a,b;
			cin>>a>>b;
			if(b>r)
			{
				fz=1;
				continue;
			}
			no[i].zuo=a-sqrt(r*r-b*b);
			no[i].you=a+sqrt(r*r-b*b);
		}
		if(fz)
		{
			printf("Case %d: -1\n",cnt);
		}
		else
		{
			sort(no,no+n);
			int sum=1;
			double left=no[0].zuo,right=no[0].you;
			for(int i=1;i<n;i++)
			{
			
				if(no[i].zuo>right)//并不能将前一个区间覆盖,此时雷达数加一,区间变为当前区间 
				{
					
					sum++;
					left=no[i].zuo;
					right=no[i].you;
				}
				else if(no[i].you<right) //可以将前一个区间覆盖,右区间更新即可 
				       right=no[i].you;
				
			}
			printf("Case %d: %d\n",cnt,sum);
		}
	}
	return 0;
}

 

1328:Radar Installation 查看 提交 统计 提示 提问 时间限制: 1000ms 内存限制: 65536kB 描述 Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. Figure A Sample Input of Radar Installations 输入 The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. The input is terminated by a line containing pair of zeros 输出 For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case. 生成c语言代码
最新发布
10-20
以下是用于解决雷达安装问题的 C 语言代码: ```c #include <stdio.h> #include <math.h> #include <stdlib.h> // 定义一个结构体来存储每个岛屿对应的雷达可安装区间 typedef struct { double left; double right; } Interval; // 比较函数,用于 qsort 对区间按左端点排序 int compare(const void *a, const void *b) { Interval *ia = (Interval *)a; Interval *ib = (Interval *)b; if (ia->left < ib->left) return -1; if (ia->left > ib->left) return 1; return 0; } int main() { int n, d; int case_num = 1; while (1) { scanf("%d %d", &n, &d); if (n == 0 && d == 0) break; Interval intervals[1000]; int impossible = 0; // 读取每个岛屿的坐标,并计算对应的雷达可安装区间 for (int i = 0; i < n; i++) { int x, y; scanf("%d %d", &x, &y); if (y > d) { impossible = 1; } double dx = sqrt(d * d - y * y); intervals[i].left = x - dx; intervals[i].right = x + dx; } if (impossible) { printf("Case %d: -1\n", case_num); } else { // 对区间按左端点进行排序 qsort(intervals, n, sizeof(Interval), compare); int radar_count = 1; double current_right = intervals[0].right; // 遍历排序后的区间,计算最少雷达数量 for (int i = 1; i < n; i++) { if (intervals[i].left > current_right) { radar_count++; current_right = intervals[i].right; } else if (intervals[i].right < current_right) { current_right = intervals[i].right; } } printf("Case %d: %d\n", case_num, radar_count); } case_num++; // 读取分隔用的空白行 while (getchar() != &#39;\n&#39;); } return 0; } ``` ### 代码解释 1. **结构体 `Interval`**:用于存储每个岛屿对应的雷达可安装区间,包含左端点 `left` 和右端点 `right`。 2. **`compare` 函数**:用于 `qsort` 对区间按左端点进行排序。 3. **主函数 `main`**: - 循环读取输入,直到遇到 `n = 0` 和 `d = 0` 时结束。 - 对于每个测试用例,读取每个岛屿的坐标,计算对应的雷达可安装区间。如果岛屿的 `y` 坐标大于雷达覆盖距离 `d`,则无法覆盖该岛屿,标记为 `impossible`。 - 如果没有无法覆盖的岛屿,对区间按左端点进行排序。 - 遍历排序后的区间,通过贪心算法计算最少雷达数量。 - 输出每个测试用例的编号和最少雷达数量,如果无法覆盖所有岛屿,则输出 `-1`。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值