10790 - How Many Points of Intersection?

  How Many Points of Intersection? 

We have two rows. There are a dots on the top row and b dots on the bottom row. We draw line segments connecting every dot on the top row with every dot on the bottom row. The dots are arranged in such a way that the number of internal intersections among the line segments is maximized. To achieve this goal we must not allow more than two line segments to intersect in a point. The intersection points on the top row and the bottom are not included in our count; we can allow more than two line segments to intersect on those two rows. Given the value of a and b, your task is to compute P(ab), the number of intersections in between the two rows. For example, in the following figure a = 2 and b = 3. This figure illustrates that P(2, 3) = 3.

\epsfbox{p10790.eps}

Input 

Each line in the input will contain two positive integers a ( 0 < a$ \le$20000) and b ( 0 < b$ \le$20000). Input is terminated by a line where both a and b are zero. This case should not be processed. You will need to process at most 1200 sets of inputs.

Output 

For each line of input, print in a line the serial of output followed by the value of P(ab). Look at the output for sample input for details. You can assume that the output for the test cases will fit in 64-bitsigned integers.

Sample Input 

2 2
2 3
3 3
0 0

Sample Output 

Case 1: 1
Case 2: 3
Case 3: 9

这道题没什么好说的,有个公式:a*(a-1) * b * (b -1)/4

要注意数据的范围。int型在运算的过程如果超过了int型,不能直接赋值给long long。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<ctype.h>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
int main ()
{
    long long a,b;
    int p=1;
    long long t;
    while(cin>>a>>b)
    {
        if (a==0) break;
        t=a*(a-1)*b*(b-1)/4;
        printf("Case %d: %lld\n",p,t);
        p++;
    }
    return 0;
}


Description Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. Input The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. Output For each case, output a single integer, the maximum rate at which water may emptied from the pond. Sample Input 5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10 Sample Output 50
最新发布
08-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值