水动力方程的发展史
说起NS方程,大家都知道方程名称中的两位科学家先驱——纳维和斯托克斯。可是还有一名科学家应该被大家知晓,那就是法国科学家圣维南。圣维南全名为Adhémar Jean Claude Barré de Saint-Venant,一般用Saint-Venant来代表他。他是十九世纪法国著名的机械师、数学家,主要从事力学、弹性、静水学和流体动力学方面的研究,推导出了非恒定明渠流浅水方程。这个方程也被称为圣维南方程,是现代水利工程中的一组重要方程。圣维南方程是水动力方程一维化形态。圣维南不仅独立的推导出了非恒定明渠流浅水方程,他还在纳维之后,重新推导了关于粘性流动的方程,考虑到了内部的粘性应力,并完全放弃了纳维采用的分子方法,并于1843年发表了相关论文。该论文首次正确地识别了粘性系数及其作为流动中速度梯度的乘数的作用。他还进一步将这些乘积识别为由于摩擦作用从而在流体内部产生的粘性应力。随后,在基于不可压条件和静水压假设等条件下,二维水动力方程组被推导出来,也就是被大众熟悉的浅水方程。浅水方程的假设前提为水体的深度方向尺度远远小于水平方向尺度,因此可以将深度方向的速度分布等效为均匀流。连续方程中的密度项也通过积分转化为水深的表达式。浅水方程的出现极大的方便了科学家通过数学物理方法寻找水体运动规律。但是在水库或是深度方向需要精细考虑的场景,二维的浅水方程就不够准确了。因此科学家将深度方向再进行分层细化,每层之间再通过约束方程进行质量和动量的传递,从而产生了三维浅水方程。
水动力方程的表达形式
先看圣维南方程组(一维水动力)的表达形式:
连续性方程: