1021. Deepest Root (25)

本文介绍了一种算法,用于在给定的连通无环图(即树)中找到能够生成最高树的根节点,这样的根节点被称为最深根。文章详细解释了输入输出规格,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
#include<iostream>
#include<cstdio>
#include<vector>
#include<cstring>
using namespace std;
#define maxn 10001
vector<int>q[maxn];
bool vis[maxn];
int deeps[maxn];
int deep;
void dfs(int now,int cnt)
{
    vis[now] = 1;

    if(deep < cnt)
    {
        deep =cnt;
    }
    int len = q[now].size();
    for(int i = 0; i < len; i++)
    {
        int to = q[now][i];
        if(vis[to] == 0)
        {
            vis[to] = 1;
            dfs(to,cnt+1);
            vis[to] = 0;
        }
    }
}

void dfs1(int now)
{
    vis[now] = 1;
    int len = q[now].size();
    for(int i = 0; i < len; i++)
    {
        int to = q[now][i];
        if(vis[to] == 0)
        {
            vis[to] = 1;
            dfs1(to);
        }
    }

}
int main()
{
    int n, m;
    int u,v;

    scanf("%d", &n);
    for(int i = 1; i < n; i++)
    {
        scanf("%d%d", &u, &v);
        q[u].push_back(v);
        q[v].push_back(u);
    }

    int maxDeep = 0;
    int flag = 0;
    int sum = 0;
    for(int i=1; i <= n; i++)
    {
        if(vis[i] == 0)
        {
            sum++;
            dfs1(i);
        }
    }
    if(sum > 1)
        flag = 1;
    if(flag == 1)
    {
        printf("Error: %d components\n",sum);

    }
    else
    {
        for( int i = 1; i <= n; i++)
        {
            memset(vis, 0, sizeof(vis));
            deep = 0;
            dfs(i,0);
            deeps[i] = deep;
            if(maxDeep < deep)
            {
                maxDeep = deep;
            }
        }
        for(int i = 1; i <= n; i++)
        {
            if(deeps[i] == maxDeep)
            printf("%d\n",i);
        }
    }
}


# -*- coding: utf-8 -*- '''请在Begin-End之间补充代码, 完成BinaryTree类''' class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(',') # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
最新发布
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值