题意:m 张牌,开始时全部正面朝下,翻转 n 次,每次翻转 xi 张牌,问最后的结果有多少种(0<n,m<=100000, 0<=Xi<=m)?
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869
——>>假如最后有 a 张牌正面朝上,则它的结果有 C[m][a] 种(组合数),所以,只要求出最后可能有多少张牌正面朝上,再累加其组合数可行。。
1)求最后正面牌数的上下界;
2)以 2 为间隙进行枚举(可以取两个连续区间来试试,连续的区间最小变动为2,头尾变)。
#include <cstdio>
typedef long long LL;
const int MOD = 1000000009;
const int MAXN = 100000;
int n, m;
int L, R;
LL f[MAXN + 10];
void Init()
{
L = R = 0;
}
void Read()
{
int x;
for (int i = 0; i < n; ++i)
{
scanf("%d", &x);
int bufR = R;
if (R + x <= m)
{
R += x;
}
else
{
if (L + x > m)
{
R = m - (L + x - m);
}
else
{
if ((m - L - x) & 1)
{
R = m - 1;
}
else
{
R = m;
}
}
}
if (x <= L)
{
L -= x;
}
else
{
if (x > bufR)
{
L = x - bufR;
}
else
{
if ((x - L) & 1)
{
L = 1;
}
else
{
L = 0;
}
}
}
}
}
void Gcd(LL a, LL b, LL& d, LL& x, LL& y)
{
if (!b)
{
d = a;
x = 1;
y = 0;
}
else
{
Gcd(b, a % b, d, y, x);
y -= a / b * x;
}
}
LL Inv(int a, int n)
{
LL ret = 0, d, y;
Gcd(a, n, d, ret, y);
return d == 1 ? (ret + n) % n : -1;
}
void GetF()
{
f[0] = f[1] = 1;
for (int i = 2; i <= MAXN; ++i)
{
f[i] = i * f[i - 1] % MOD;
}
}
LL C(LL n, LL m)
{
return f[n] * Inv(f[m] * f[n - m] % MOD, MOD) % MOD;
}
void Solve()
{
LL ret = 0;
for (int i = L; i <= R; i += 2)
{
ret = (ret + C(m, i)) % MOD;
}
printf("%I64d\n", ret);
}
int main()
{
GetF();
while (scanf("%d%d", &n, &m) == 2)
{
Init();
Read();
Solve();
}
return 0;
}