题目链接:BZOJ 1087
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int N,M,cnt=0;
int a[550],s[550];
long long dp[12][550][500];
int find(int x){
int t=1,tot=0;
while(t<=x){
if(t&x)tot++;
t<<=1;
}
return tot;
}
int main(){
scanf("%d%d",&N,&M);
for(int i=0;i<(1<<N);i++){
if(!(i&(i<<1))){
a[++cnt]=i; s[cnt]=find(i);
}
}
for(int i=1;i<=cnt;i++)dp[1][i][s[i]]=1;
long long ans=0;
for(int i=2;i<=N;i++){
for(int p=0;p<=M;p++){
for(int j=1;j<=cnt;j++){
for(int k=1;k<=cnt;k++){
if(!(a[k]&a[j]) && !((a[j]<<1)&a[k]) && !((a[j]>>1)&a[k])){
if(p>=s[k]+s[j])dp[i][j][p]+=dp[i-1][k][p-s[j]];
}
}
}
}
}
for(int i=1;i<=cnt;i++)ans+=dp[N][i][M];
cout<<ans<<endl;
return 0;
}
本文提供了一种解决BZOJ1087问题的有效算法,通过使用动态规划方法,针对特定的位运算特点进行了优化,有效地解决了组合计数问题。
616

被折叠的 条评论
为什么被折叠?



