bzoj 3112(zjoi 2013 防守战线) 线性规划+网络流

题目链接http://www.lydsy.com/JudgeOnline/problem.php?id=3112

话说这道题真心变态。。。终于见识到了浙江省选的难度了。。。

我们根据这道题的样例容易写出这样的不等式组:

x2+x3>=1

x1+x2+x3+x4+x5>=4

x3+x4+x5>=2

所求为min{x1+5*x2+6*x3+3*x4+4*x5},其中x[i]表示在i位置修建塔的个数。

首先打开脑洞,我们容易得出(容易你妹!)要用对偶图的性质来做。http://cxjyxx.me/?p=261该博客中有提到为什么要转成对偶图。那么现在问题就来了,怎样将一堆不等式转为另一堆不等式。本人开始看了很多题解都不懂,然后在看到这张图片时顿悟了= =||


根据这张表,我们可以把样例表示成


其中c为min{x1+5*x2+6*x3+3*x4+4*x5}的系数,对于矩形每一列,0或1的取值表示在原不等式中,每一项x[i]的系数。那么把矩形横着来看,每一排的0或1的取值表示在新不等式中,每一项的系数。根据此表,我们可以得到新的不等式组,其中y为新变量。

y2<=1

y1+y2<=5

y1+y2+y3<=6

y2+y3<=3

y2+y3<=4

所求即为max{y1+5*y2+2*y3}。

我们添加变量,将原式放缩为

y2+y4=1

y1+y2+y5=5

y1+y2+y3+y6=6

y2+y3+y7=3

y2+y3+y8=4

然后我们依次用上一个式子减去下一个式子,就可以得到

y2+y4=1

y1+y5-y4=4

y3+y6-y5=1

y7-y1-y6=-3

y8-y7=1

-y2-y3-y8=-4

然后我们仔细观查这一堆不等式,我们就(bu)可(neng)以得到每个变量在其中出现2次,且一正一负。然后通过我们惊人的联想能力(尼玛)就不难想到,网络流。因为网络流满足流入流量等于流出流量。将每个不等式看做一个点,等式右边的看做容量且费用为0,加入两个虚拟节点,一个为源点,另一个为汇点。对于每个变量x从它为正的式子向为负的式子连一条容量为正无穷,权值为题中读入的边,再跑一次最小费用流即可。

后面的代码是多亏了这位神犇的博客,表示感谢!这是链接 http://www.cnblogs.com/zig-zag/archive/2013/04/23/3036970.html,我觉得他讲的比我好。。。

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;

#define inf (1e9)
int N,M;
int a[1010][10010],next[10010];

void input(){
	scanf("%d%d",&N,&M);
	for(int i=1;i<=N;i++)scanf("%d",&a[i][0]);
	for(int i=1;i<=M;i++){
		int x,y;
		scanf("%d%d%d",&x,&y,&a[0][i]);
		for(int j=x;j<=y;j++){
			a[j][i]=1;
		}
	}
}

void change(int x,int y){
	int last=-1;
	for(int i=0;i<=M;i++){
		if(a[x][i]){
			next[i]=last;
			last=i;
		}
	}
	for(int i=0;i<=N;i++){
		if(a[i][y]==0||x==i)continue;
		for(int j=last;j!=-1;j=next[j]){
			if(j==y)continue;
			a[i][j]-=a[i][y]*a[x][j];
		}
		a[i][y]=-a[i][y];
	}
}

int ask(){
	while(1){
		int sai=0;
		for(int i=1;i<=M;i++){
			if(a[0][i]>0){
				sai=i;break;
			}
		}
		if(sai==0)return -a[0][0];
		int temp,min_num=inf;
		for(int i=1;i<=N;i++){
			if(a[i][sai]>0&&a[i][0]<min_num){
				temp=i; min_num=a[i][0];
			}
		}
		change(temp,sai);
	}
}

void solve(){
	int ans=ask();
	printf("%d",ans); 
}

int main(){
	input();
	solve();
	return 0;
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值