[bzoj1806][DP]Miners 矿工配餐

本文介绍了一个关于如何通过最优分配不同类型食品车到两个煤矿来最大化总产煤量的问题。通过动态规划的方法,考虑了矿工对食品多样性的偏好,实现算法以找到最佳配送方案。

Description

现有两个煤矿,每个煤矿都雇用一组矿工。采煤工作很辛苦,所以矿工们需要良好饮食。每当一辆食品车到达煤矿时,矿工们便会产出一定数量的煤。有三种类型的食品车:肉车,鱼车和面包车。
矿工们喜欢变化的食谱。如果提供的食品能够不断变化,他们的产煤量将会增加。每当一个新的食品车到达煤矿时,矿工们就会比较这种新的食品和前两次(或者少于两次,如果前面运送食品的次数不足两次)的食品,并且:
• 如果这几次食品车都是同一类型的食品,则矿工们产出一个单位的煤。 • 如果这几次食品车中有两种不同类型的食品,则矿工们产出两个单位的煤。
• 如果这几次食品车中有三种不同类型的食品,则矿工们产出三个单位的煤。
预先已知食品车的类型及其被配送的顺序。通过确定哪车食品送到哪个煤矿可以影响产煤量。食品车不能被拆分,每个食品车必须被全部送到一个或另一个煤矿。两个煤矿也并不要求接收相同数量的食品车(事实上,也允许将所有食品车都送到一个煤矿)。
任务
给出食品车的类型及其被配送的顺序,要求你写一个程序,确定哪个食品车应被送到煤矿1,哪个食品车应被送到煤矿2,以使得两个煤矿的产煤量的总和最大。

Input

输入的第一行包含一个整数N (1 ≤ N ≤ 100 000), 表示食品车的数目。
第二行包含一个由N个字符组成的字符串,按照配送顺序依次表示食品车配送的食品的类型。每个字符是以下三个大写字母之一:’M’ (表示肉类),
‘F’ (表示鱼类) 或 ‘B’ (表示面包)。

Output

输出一个整数,表示最大的总产煤量。 评分 在45分的测试数据中,食品车的数目至多为20

Sample Input

6

MBMFFB

Sample Output

12

题解

沉迷刷水无法自拔
f[i][j][k][u][v]表示第i次送餐,1号矿点倒数第一次i,倒数第二次送j,2号矿点同理的最大采矿数
瞎转移
由于空间只给了64M,可以发现第i次只与第i-1次有关,于是滚动

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
bool vis[2][4][4][4][4];//倒数第一次 倒数第二次 
int f[2][4][4][4][4];
int n,st;
char ch[110000];
int get(char c)
{
    if(c=='M')return 1;
    else if(c=='F')return 2;
    else return 3;
}
int findch(int x,int y,int c)
{
    if(x==0 || y==0)
    {
        if(x==0 && y==0)return 1;
        if(y==0 && x!=c)return 2;
        if(y==0 && x==c)return 1;
    }
    else
    {
        if(x!=y && y!=c && c!=x)return 3;
        if((x==y && y!=c) || (x==c && x!=y) || (y==c && x!=y))return 2;
        if(x==y && y==c)return 1;
    }
}
int main()
{
    scanf("%d",&n);
    scanf("%s",ch+1);
    memset(vis,false,sizeof(vis));vis[st][0][0][0][0]=true;
    for(int i=1;i<=n;i++)
    {
        st^=1;memset(f[st],0,sizeof(f[st]));memset(vis[st],false,sizeof(vis[st]));
        int tmp=get(ch[i]);
        for(int j=0;j<=3;j++)
            for(int k=0;k<=3;k++)
                for(int u=0;u<=3;u++)
                    for(int v=0;v<=3;v++)
                        if(vis[st^1][j][k][u][v])
                        {
                            f[st][tmp][j][u][v]=max(f[st][tmp][j][u][v],f[st^1][j][k][u][v]+findch(j,k,tmp));vis[st][tmp][j][u][v]=true;
                            f[st][j][k][tmp][u]=max(f[st][j][k][tmp][u],f[st^1][j][k][u][v]+findch(u,v,tmp));vis[st][j][k][tmp][u]=true;
                        }
    }
    int ans=0;
    for(int i=0;i<=3;i++)
        for(int j=0;j<=3;j++)
            for(int u=0;u<=3;u++)
                for(int v=0;v<=3;v++)if(vis[st][i][j][u][v])ans=max(ans,f[st][i][j][u][v]);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值